Gene regulation in the hippocampus is fundamental for its development, synaptic plasticity, memory formation, and adaptability. Comparisons of gene expression among different developmental stages, distinct cell types, and specific experimental conditions have identified differentially expressed genes contributing to the organization and functionality of hippocampal circuits. The NEIL3 DNA glycosylase, one of the DNA repair enzymes, plays an important role in hippocampal maturation and neuron functionality by shaping transcription.
View Article and Find Full Text PDFDNA repair enzymes are essential for the maintenance of the neuronal genome and thereby proper brain functions. Emerging evidence links DNA repair to epigenetic gene regulation; however, its contribution to different transcriptional programs required for neuronal functions remains elusive. In this study, we identified a role of the DNA repair enzyme NEIL3 in modulating the maturation and function of hippocampal CA1 neurons by shaping the CA1 transcriptome during postnatal development and in association with spatial behavior.
View Article and Find Full Text PDFOxidative DNA damage in the brain has been implicated in neurodegeneration and cognitive decline. DNA glycosylases initiate base excision repair (BER), the main pathway for oxidative DNA base lesion repair. NEIL1 and NEIL3 DNA glycosylases affect cognition in mice, while the role of NEIL2 remains unclear.
View Article and Find Full Text PDF