In the context of a reservoir, the anoxia that develops in the bottom sediment induces the release of phosphorus (P) into the overlying water, thus supporting eutrophication. Most studies focusing on P dynamic in an aquatic environment fail to consider the "truly" dissolved and colloidal fractions, hence the colloidal P has gone largely unexplored. The aim of this study was to investigate the release of sedimentary P under oscillating aerobic, anoxic and aerobic conditions, in taking into account the colloidal (10 kDa-1 µm) and truly dissolved (< 10 kDa) fractions.
View Article and Find Full Text PDFMobilizable colloids from reservoir sediment contain nutrients and contaminants, thus may affect water quality once being released. A major obstacle to evaluate the quantity and quality of mobilizable colloids in natural system is the using of appropriate method for colloid extraction from sediment and their separation from dissolved and particulate phases. This work evaluates the role of different extraction methods (agitation, sonication at sediment pH, and sonication at alkaline pH) on the characteristics (mass, size, shape and composition) of water-mobilizable colloids from sediment of Champsanglard dam reservoir (France).
View Article and Find Full Text PDFThe missing Electronic Supplementary Material in the original paper is included in this paper.
View Article and Find Full Text PDFDam construction leads to both sediment discontinuities and the creation of internal phosphorus (P) loads in reservoirs capable of supporting eutrophication. Today, majority of large rivers are dammed and numerous of these infrastructures are constructed in cascade. However, few studies focus on the cumulative effect of the presence of dam on sediment P mobility and bioavailability in downstream reservoirs and rivers parts or throughout the continuum.
View Article and Find Full Text PDFThe internal sedimentary phosphorus (P) load of aquatic systems is able to support eutrophication, especially in dam-reservoir systems where sedimentary P stock is high and where temporary anaerobic conditions occur. The aim of this study therefore is to examine the response of sedimentary P exposed to redox oscillations. Surface sediments collected in the Champsanglard dam-reservoir (on the Creuse River, France) were subjected to two aerobic phases (10 and 12 days) alternated with two anaerobic periods (21 and 27 days) through batch incubations.
View Article and Find Full Text PDFThe dynamics of arsenic (As) and antimony (Sb) in wetland soil periodically submitted to agricultural pressure as well as the impact of soil enrichment with NO3 (-) (50 mg L(-1)) and PO4 (3-) (20 mg L(-1)) on As and Sb release were evaluated at both field and laboratory scales. The results showed that As and Sb exhibited different temporal behaviors, depending on the study scale. At field scale, As release (up to 93 μg L(-1)) occurred under Fe-reducing conditions, whereas Sb release was favored under oxidizing conditions (up to 5 μg L(-1)) and particularity when dissolved organic carbon (DOC) increased in soil pore water (up to 92.
View Article and Find Full Text PDFThe study investigates the stability of gadolinium-DTPA complex in presence of competing metallic ions, Fe(3+), Cu(2+) and Zn(2+) using batch experiments and coagulation-flocculation simulations. High performance liquid chromatography with fluorescence detection was used for simultaneous analysis of chelate gadolinium (Gd-DTPA) and free Gd(III) ion in water. It was shown that Cu(2+) has a strong affinity for DTPA and could lead to a complete release of Gd(3+).
View Article and Find Full Text PDFIn Mediterranean regions where the population is rapidly growing, the risk of water resource contamination by wastewater is likely to increase. This is the case of the Hérault watershed (south of France), where the presence of treated wastewater in surface and ground waters has been shown in a previous study. To assess the consequence of these wastewater contaminations as regards pharmaceuticals and other organic compounds, 16 common pharmaceuticals (amitryptilin, acetylsalicylic acid, carbamazepine, clenbuterol, diazepam, diclofenac, doxepin, gemfibrozil, ibuprofen, imipramine, ketoprofen, naproxen, nordiazepam, paracetamol, salbutamol, and terbutalin) as well as wastewater related pollutants (caffeine, gadolinium anomaly, and boron) were analyzed in wells pumped for potable water supply and in two wastewater treatment plant (WWTP) effluents.
View Article and Find Full Text PDF