The symbiotic infection of root cells by nitrogen-fixing rhizobia during nodulation requires the transcription factor Nodule Inception (NIN). Our root hair transcriptomic study extends NIN's regulon to include and genes involved in cell wall modification, gibberellin biosynthesis, and a comprehensive group of nutrient (N, P, and S) uptake and assimilation genes, suggesting that NIN's recruitment to nodulation was based on its role as a growth module, a role shared with other NIN-Like Proteins. The expression of jasmonic acid genes in suggests the involvement of NIN in the resolution of growth versus defense outcomes.
View Article and Find Full Text PDFBacterial accommodation inside living plant cells is restricted to the nitrogen-fixing root nodule symbiosis. In many legumes, bacterial uptake is mediated via tubular structures called infection threads (ITs). To identify plant genes required for successful symbiotic infection, we screened an ethyl methanesulfonate mutagenized population of Lotus japonicus for mutants defective in IT formation and cloned the responsible gene, ERN1, encoding an AP2/ERF transcription factor.
View Article and Find Full Text PDFLegumes improve their mineral nutrition through nitrogen-fixing root nodule symbioses with soil rhizobia. Rhizobial infection of legumes is regulated by a number of transcription factors, including ERF Required for Nodulation1 (ERN1). Medicago truncatula plants defective in ERN1 are unable to nodulate, but still exhibit early symbiotic responses including rhizobial infection.
View Article and Find Full Text PDFDuring endosymbiotic interactions between legume plants and nitrogen-fixing rhizobia, successful root infection by bacteria and nodule organogenesis requires the perception and transduction of bacterial lipo-chitooligosaccharidic signal called Nod factor (NF). NF perception in legume roots leads to the activation of an early signaling pathway and of a set of symbiotic genes which is controlled by specific early transcription factors (TFs) including CYCLOPS/IPD3, NSP1, NSP2, ERN1 and NIN. In this study, we bring convincing evidence that the Medicago truncatula CCAAT-box-binding NF-YA1 TF, previously associated with later stages of rhizobial infection and nodule meristem formation is, together with its closest homolog NF-YA2, also an essential positive regulator of the NF-signaling pathway.
View Article and Find Full Text PDF