Publications by authors named "Marion Murray"

Body-weight supported locomotor training (BWST) promotes recovery of load-bearing stepping in lower mammals, but its efficacy in individuals with a spinal cord injury (SCI) is limited and highly dependent on injury severity. While animal models with complete spinal transections recover stepping with step-training, motor complete SCI individuals do not, despite similarly intensive training. In this review, we examine the significant differences between humans and animal models that may explain this discrepancy in the results obtained with BWST.

View Article and Find Full Text PDF

Study Design: Literature review.

Purpose: The corticospinal system (CS) and peripheral nervous system (PNS) are common sites of damage during the early stages of life. The prenatal or immediately prenatal period is the most common time for damage to occur.

View Article and Find Full Text PDF

Background: Cervical spinal cord injury (SCI) models in rats have become increasingly useful because of their translational potential. The goal of this study was to design, develop and validate a quick and reliable forelimb locomotor rating scale for adult rats with unilateral cervical SCI injury.

New Method: Adult female rats were subjected to a C5 unilateral mild contusion (n=10), moderate contusion (n=10) or hemisection injury (n=9).

View Article and Find Full Text PDF

We examined gene expression in the lumbar spinal cord and the specific response of motoneurons, intermediate gray and proprioceptive sensory neurons after spinal cord injury and exercise of hindlimbs to identify potential molecular processes involved in activity dependent plasticity. Adult female rats received a low thoracic transection and passive cycling exercise for 1 or 4weeks. Gene expression analysis focused on the neurotrophic factors: brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), neurotrophin-3 (NT-3), neurotrophin-4 (NT-4), and their receptors because of their potential roles in neural plasticity.

View Article and Find Full Text PDF

Adult central nervous system (CNS) neurons do not regenerate severed axons unaided but may regenerate axons into apposed predegenerated peripheral nerve grafts (PNGs). We examined gene expression by using microarray technology in laser-dissected lateral vestibular (LV) neurons whose axons were severed by a lateral hemisection at C3 (HX) and in lateral vestibular nucleus (LVN) neurons that were hemisected at C3 and that received immunosuppression with cyclosporine A (CsA) and a predegenerated PNG (termed I-PNG) into the lesion site. The results provide an expression analysis of temporal changes that occur in LVN neurons in nonregenerative and potentially regenerative states and over a period of 42 days.

View Article and Find Full Text PDF

Individually, motor training, pharmacological interventions, and housing animals in an enriched environment (EE) following spinal cord injury (SCI) result in limited functional improvement but, when combined, may enhance motor function. Here, we tested amphetamine (AMPH)-enhanced skilled motor training following a unilateral C3-C4 contusion injury on the qualitative components of reaching and on skilled forelimb function, as assessed using single-pellet and staircase reaching tasks. Kinematic analysis evaluated the quality of the reach, and unskilled locomotor function was also tested.

View Article and Find Full Text PDF

Body-weight-supported treadmill training (BWSTT)-related locomotor recovery has been shown in spinalized animals. Only a few animal studies have demonstrated locomotor recovery after BWSTT in an incomplete spinal cord injury (SCI) model, such as contusion injury. The contribution of spared descending pathways after BWSTT to behavioral recovery is unclear.

View Article and Find Full Text PDF

Background: Ambulating on stairs is an important aspect of daily activities for many individuals with incomplete spinal cord injury (SCI), and little is known about the effect of training for this specific task.

Objective: The goal of this study was to determine whether staircase ascent training enhances motor recovery in animals with contusion injury.

Methods: Rats received a midthoracic contusion lesion of moderate severity and were randomly divided into 2 groups, with one group receiving staircase ascent training for up to 8 weeks and the other receiving no training.

View Article and Find Full Text PDF

In this review, we begin by considering why post-stroke depression (PSD) is so prevalent. We then examine the current evidence base to support cognitive behavioural therapy (CBT) as a treatment approach for the condition. While there is limited evidence currently, we demonstrate that much remains to be established with regard to PSD and the efficacy of CBT.

View Article and Find Full Text PDF

We describe here a novel forelimb locomotor assessment scale (FLAS) that assesses forelimb use during locomotion in rats injured at the cervical level. A quantitative scale was developed that measures movements of shoulder, elbow, and wrist joints, forepaw position and digit placement, forelimb-hindlimb coordination, compensatory behaviors adopted while walking, and balance. Female Sprague-Dawley rats received graded cervical contusions ranging from 200 to 230 ("mild," n=11) and 250-290 kdyn ("moderate," n=13) between C5 and C8.

View Article and Find Full Text PDF

Exercise-induced cortical plasticity is associated with improved functional outcome after brain or nerve injury. Exercise also improves functional outcomes after spinal cord injury, but its effects on cortical plasticity are not known. The goal of this investigation was to study the effect of moderate exercise (treadmill locomotion, 3 min/d, 5 d/week) on the somatotopic organization of forelimb and hindlimb somatosensory cortex (SI) after neonatal thoracic transection.

View Article and Find Full Text PDF

Cervical spinal cord injury (SCI) can severely impair reaching and grasping ability, and several descending systems, including the rubrospinal tract and corticospinal tract, have been implicated in the control of reach-to-grasp movements. The primary aim of this study was to characterize further the forelimb deficits associated with a cervical dorsolateral funiculotomy, which ablates the rubrospinal tract but spares the dorsal and ventral corticospinal tract in the rat. Adult female rats that preferred to use their right forelimb to reach for single pellets received a lesion to the right cervical dorsolateral funiculus between the C3-4 dorsal roots.

View Article and Find Full Text PDF

In spinal cats, locomotor recovery without rehabilitation is limited, but weight-bearing stepping returns with treadmill training. We studied whether neurotrophins administered to the injury site also restores locomotion in untrained spinal cats and whether combining both neurotrophins and training further improves recovery. Ordinary rat fibroblasts or a mixture of fibroblasts secreting brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) (Fb-NTF) were grafted into T12 spinal transection sites.

View Article and Find Full Text PDF

Neuromuscular junctions (NMJs) innervated by motor neurons below spinal cord injury (SCI) have been reported to remain intact despite the interruption of supraspinal pathways and the resultant loss of activity. Here we report notably heterogeneous NMJ responses to SCI that include overt synapse disassembly. Complete transection of the thoracic spinal cord of adult rats evoked massive sprouting of nerve terminals in a subset of NMJs in ankle flexors, extensor digitorum longus, and tibialis anterior.

View Article and Find Full Text PDF

Previous studies have demonstrated that either transplantation of bone marrow stromal cells (MSC) or physical exercise regimens can elicit limited functional recovery following spinal cord injury, presumably through different mechanisms. The present study examined whether transplantation of MSC derived from transgenic Fischer alkaline phosphatase (AP) rats, in combination with exercise, would have synergistic effects leading to recovery of function that is greater than either alone. Adult female Sprague-Dawley rats received a moderate thoracic contusion injury and were divided into three groups: operated controls (Op-Control), MSC transplant recipients (MSC), and MSC transplant recipients plus exercise (MSC+Ex).

View Article and Find Full Text PDF

Loss of descending serotonergic (5-HT) projections after spinal cord injury (SCI) contributes to motor deficits and upregulation of receptors on partially denervated serotonergic targets in the spinal cord. Serotonergic agonists acting on these upregulated receptors are potential therapeutic agents that could ameliorate motor deficits. However, modification of 5-HT receptors following complete spinal cord injury results in different effects by 5-HT2C receptor agonists and antagonists.

View Article and Find Full Text PDF

Fibroblasts that have been genetically modified to secrete neurotrophins can stimulate axonal regeneration, rescue injured neurons, and improve function when grafted into a spinal cord injury site. These grafts are usually allografts that require immunosuppression to prevent rejection. In this study, we compared the effects of two immunophilin-ligands (cyclosporine A [CsA] and FK506) that are used clinically to prevent transplant rejection on protection of grafted fibroblasts.

View Article and Find Full Text PDF

Transplanting neuronal and glial restricted precursors (NRP/GRP) into a midthoracic injury 9 d after contusion improved bladder and motor function, diminished thermal hypersensitivity, and modified lumbosacral circuitry compared with operated controls (OP-controls). Histological analysis showed that NRP/GRP survived, filled the lesion site, differentiated into neurons and glia, and migrated selectively. Volume of spinal cord spared was increased in NRP/GRP recipients, suggesting local protection.

View Article and Find Full Text PDF

We examined whether fibroblasts, genetically modified to express BDNF and NT-3 (Fb-BDNF/NT3) and transplanted into a thoracic spinal injury site, would enhance recovery of bladder function and whether this treatment would be associated with reorganization of lumbosacral spinal circuits implicated in bladder function. Rats received modified-moderate contusion injuries at T8/9, and 9 days later, Fb-BDNF/NT3 or unmodified fibroblasts (OP-controls) were delivered into the cord. Fb-BDNF/NT3 rats recovered from areflexic bladder earlier, showed decreased micturition pressure and fewer episodes of detrusor hyperreflexia, compared to OP-controls.

View Article and Find Full Text PDF

Encapsulation of cells has the potential to provide a protective barrier against host immune cell interactions after grafting. Previously we have shown that alginate encapsulated BDNF-producing fibroblasts (Fb/BDNF) survived for one month in culture, made bioactive neurotrophins, survived transplantation into the injured spinal cord in the absence of immune suppression, and provided a permissive environment for host axon growth. We extend these studies by examining the effects of grafting encapsulated Fb/BDNF into a subtotal cervical hemisection on recovery of forelimb and hindlimb function and axonal growth in the absence of immune suppression.

View Article and Find Full Text PDF

Background And Purpose: Abnormal apparent diffusion coefficient (ADC) values in injured spinal cord white matter and fibroblast transplants have been shown to correspond with qualitative histologic findings of axonal loss or regeneration. We proposed that ADC values would correlate with quantitative axonal tracing in the transected rubrospinal tract (RST).

Methods: Eleven rats received right-sided lateral funiculus lesions at C3-4 (disrupting the RST) and transplantation of fibroblasts that were unmodified or modified to secrete brain-derived neurotrophic factor (BDNF).

View Article and Find Full Text PDF

Modification of spinal serotonergic receptors caudal to spinal injury occurs in rats that received spinal cord transections as neonates. Evaluation of the serotonin syndrome, a group of motor stereotypies elicited by serotonergic (5-HT) agents in 5-HT-depleted animals, and open field locomotor behavior were used to assess behavioral consequences of injury and treatment. We extend these findings to show that a partial 5-HT(1A) agonist activity is revealed by the 5-HT(2C) receptor antagonist (SB 206,553) in this animal model, as measured by evaluation of serotonin syndrome behavior.

View Article and Find Full Text PDF

In this review we consider recovery of function after spinal cord injury, and, in particular, recovery improved following intraspinal cellular transplants. Some recovery occurs spontaneously and this can be especially dramatic in neonates, supporting the notion that developing and adult spinal cord respond differently to injury. Recovery can be improved in both neonates and adults by appropriate cellular transplants into the injury site.

View Article and Find Full Text PDF

Severe spinal cord injury results in severe, persisting deficits with little hope for substantial recovery. Recent developments in transplantation protocols, gene therapy, and methods of evaluation now offer hope of developing treatments that will lead to better prognoses. This review discusses the consequences of spinal injury, animal models used to study injury and recovery, types of cellular transplants, selection of behavioral and physiological tests of recovery, and ways to test the efficacy of the interventions and to improve transplant-mediated recovery.

View Article and Find Full Text PDF

The purpose of this study was to determine whether apparent diffusion coefficients (ADCs) in ex vivo spinal cord white matter, calculated from diffusion weighted MR (DWI) images, correlate with axonal growth and behavioral recovery following subtotal hemisection and transplantation of fibroblasts genetically modified to express brain derived neurotrophic factor (BDNF). These genetically modified fibroblasts have been shown to promote axonal growth, diminish retrograde degenerative changes in axotomized Red nucleus neurons, and are associated with behavioral recovery. Since changes in ADC appear to reflect damage to axons and myelin sheaths, which conventional MR techniques do not identify, partial repair mediated by BDNF-secreting fibroblasts should be detected with ADC measures.

View Article and Find Full Text PDF