Publications by authors named "Marion Muller"

Pulmonary arterial hypertension (PAH) is a life-threatening disease with limited survival. Herein, we propose the pharmacological inhibition of Gq proteins as a novel concept to counteract pulmonary vasoconstriction and proliferation/migration of pulmonary artery smooth muscle cells (PASMCs) in PAH. We demonstrate that the specific pan-Gq inhibitor FR900359 (FR) induced a strong vasorelaxation in large and small pulmonary arteries in mouse, pig, and human subjects ex vivo.

View Article and Find Full Text PDF

Small RNAs (sRNAs) are involved in gene silencing in multiple ways, including through cross-kingdom transfers from parasites to their hosts. Little is known about the evolutionary mechanisms enabling eukaryotic microbes to evolve functional mimics of host small regulatory RNAs. Here, we describe the identification and functional characterization of , an sRNA family derived from highly abundant short interspersed nuclear element (SINE) retrotransposons in the genome of the wheat powdery mildew pathogen.

View Article and Find Full Text PDF

Molecular processes underlying right ventricular (RV) dysfunction (RVD) and right heart failure (RHF) need to be understood to develop tailored therapies for the abatement of mortality of a growing patient population. Today, the armament to combat RHF is poor, despite the advancing identification of pathomechanistic processes. Mitochondrial dysfunction implying diminished energy yield, the enhanced release of reactive oxygen species, and inefficient substrate metabolism emerges as a potentially significant cardiomyocyte subcellular protagonist in RHF development.

View Article and Find Full Text PDF

Background: Worldwide wheat production is under constant threat by fast-evolving fungal pathogens. In the last decades, wheat breeding for disease resistance heavily relied on the introgression of chromosomal segments from related species as genetic sources of new resistance. The Pm8 resistance gene against the powdery mildew disease has been introgressed from rye into wheat as part of a large 1BL.

View Article and Find Full Text PDF

Background & Aims: Despite recent approvals, the response to treatment and prognosis of patients with advanced hepatocellular carcinoma (HCC) remain poor. Claudin-1 (CLDN1) is a membrane protein that is expressed at tight junctions, but it can also be exposed non-junctionally, such as on the basolateral membrane of the human hepatocyte. While CLDN1 within tight junctions is well characterized, the role of non-junctional CLDN1 and its role as a therapeutic target in HCC remains unexplored.

View Article and Find Full Text PDF

Dilated cardiomyopathy (DCM) is a common cause of heart failure (HF) and is of familial origin in 20−40% of cases. Genetic testing by next-generation sequencing (NGS) has yielded a definite diagnosis in many cases; however, some remain elusive. In this study, we used a combination of NGS, human-induced pluripotent-stem-cell-derived cardiomyocytes (iPSC-CMs) and nanopore long-read sequencing to identify the causal variant in a multi-generational pedigree of DCM.

View Article and Find Full Text PDF

To adapt to changing hemodynamic demands, regulatory mechanisms modulate actin-myosin-kinetics by calcium-dependent and -independent mechanisms. We investigate the posttranslational modification of human essential myosin light chain (ELC) and identify NIMA-related kinase 9 (NEK9) to interact with ELC. NEK9 is highly expressed in the heart and the interaction with ELC is calcium-dependent.

View Article and Find Full Text PDF

We sought to unravel pathomechanisms of the transition of maladaptive right ventricular (RV) remodeling to right heart failure (RHF) upon pressure overload. Exposure of C57BL/6J and C57BL/6N mice to pulmonary artery banding disclosed a tight relation of structural remodeling with afterload, but a dissociation from RV systolic function. Reduced release of mitochondrial reactive oxygen species in C57BL/6J mice prevented the development of RHF.

View Article and Find Full Text PDF

Introgressions of chromosomal segments from related species into wheat are important sources of resistance against fungal diseases. The durability and effectiveness of introgressed resistance genes upon agricultural deployment is highly variable-a phenomenon that remains poorly understood, as the corresponding fungal avirulence genes are largely unknown. Until its breakdown, the resistance gene introgressed from rye to wheat provided broad resistance against powdery mildew ().

View Article and Find Full Text PDF

Mutations in mitochondrial aminoacyl-tRNA synthetases (mtARSs) have been reported in patients with mitochondriopathies: most commonly encephalopathy, but also cardiomyopathy. Through a GWAS, we showed possible associations between mitochondrial valyl-tRNA synthetase (VARS2) dysregulations and non-ischemic cardiomyopathy. We aimed to investigate the possible consequences of VARS2 depletion in zebrafish and cultured HEK293A cells.

View Article and Find Full Text PDF

Alterations of RNA editing that affect the secondary structure of RNAs can cause human diseases. We therefore studied RNA editing in failing human hearts. Transcriptome sequencing showed that adenosine-to-inosine (A-to-I) RNA editing was responsible for 80% of the editing events in the myocardium.

View Article and Find Full Text PDF

The objectives of this study were to assess the dynamics of the SARS-CoV-2 anti-RBD-IgG response over time among older people after COVID-19 infection or vaccination and its comparison with indicative levels of protection. Geriatric patients with SARS-CoV-2 serological test results were included and divided into three groups. A vaccine group (n = 34), a group of natural COVID-19 infection (n = 32), and a group who contracted COVID-19 less than 15 days after the first injection (n = 17).

View Article and Find Full Text PDF

Background & Aims: Liver fibrosis arises from long-term chronic liver injury, accompanied by an accelerated wound healing response with interstitial accumulation of extracellular matrix (ECM). Activated hepatic stellate cells (HSC) are the main source for ECM production. MicroRNA29a (miR-29a) is a crucial antifibrotic miRNA that is repressed during fibrosis, resulting in up-regulation of collagen synthesis.

View Article and Find Full Text PDF

The emergence of new fungal pathogens through hybridization represents a serious challenge for agriculture. Hybridization between the wheat mildew ( f. sp.

View Article and Find Full Text PDF

Alternative mRNA splicing is a fundamental process to increase the versatility of the genome. In humans, cardiac mRNA splicing is involved in the pathophysiology of heart failure. Mutations in the splicing factor RNA binding motif protein 20 (RBM20) cause severe forms of cardiomyopathy.

View Article and Find Full Text PDF

Intrauterine growth restriction (IUGR) and low birth weigth (LBW) are risk factors for neonatal chronic lung disease. However, maternal and fetal genetic factors and the molecular mechanisms remain unclear. We investigated the relationship between LBW and lung function with Mendelian randomisation analyses and studied angiogenesis in a low protein diet rat model of IUGR.

View Article and Find Full Text PDF

Therapeutic options for right ventricular (RV) dysfunction and failure are strongly limited. Right heart failure (RHF) has been mostly addressed in the context of pulmonary arterial hypertension (PAH), where it is not possible to discern pulmonary vascular- and RV-directed effects of therapeutic approaches. In part, opposing pathomechanisms in RV and pulmonary vasculature, i.

View Article and Find Full Text PDF

Pm1a, the first powdery mildew resistance gene described in wheat, is part of a complex resistance (R) gene cluster located in a distal region of chromosome 7AL that has suppressed genetic recombination. A nucleotide-binding, leucine-rich repeat (NLR) immune receptor gene was isolated using mutagenesis and R gene enrichment sequencing (MutRenSeq). Stable transformation confirmed Pm1a identity which induced a strong resistance phenotype in transgenic plants upon challenge with avirulent Blumeria graminis (wheat powdery mildew) pathogens.

View Article and Find Full Text PDF

The development of improved plant nucleotide-binding, leucine-rich repeat (LRR) immune receptors (NLRs) has mostly been based on random mutagenesis or on structural information available for specific receptors complexed with the recognized pathogen effector. Here, we use a targeted mutagenesis approach based on the natural diversity of the Pm3 powdery mildew resistance alleles present in different wheat (Triticum aestivum) genotypes. In order to understand the functional importance of the amino acid polymorphisms between the active immune receptor PM3A and the inactive ancestral variant PM3CS, we exchanged polymorphic regions and residues in the LRR domain of PM3A with the corresponding segments of PM3CS.

View Article and Find Full Text PDF

Cross-kingdom RNA interference (RNAi) is a biological process allowing plants to transfer small regulatory RNAs to invading pathogens to trigger the silencing of target virulence genes. Transient assays in cereal powdery mildews suggest that silencing of one or two effectors could lead to near loss of virulence, but evidence from stable RNAi lines is lacking. We established transient host-induced gene silencing (HIGS) in wheat, and demonstrate that targeting an essential housekeeping gene in the wheat powdery mildew pathogen ( f.

View Article and Find Full Text PDF

The wheat Pm3 resistance gene against the powdery mildew pathogen occurs as an allelic series encoding functionally different immune receptors which induce resistance upon recognition of isolate-specific avirulence (AVR) effectors from the pathogen. Here, we describe the identification of five effector proteins from the mildew pathogens of wheat, rye, and the wild grass Dactylis glomerata, specifically recognized by the PM3B, PM3C and PM3D receptors. Together with the earlier identified AVRPM3, the recognized AVRs of PM3B/C, (AVRPM3), and PM3D (AVRPM3) belong to a large group of proteins with low sequence homology but predicted structural similarities.

View Article and Find Full Text PDF