alpha-Conotoxins are small disulfide-rich peptides from the venom of the Conus species that target the nicotinic acetylcholine receptor (nAChR). They are valuable pharmacological tools and also have potential therapeutic applications particularly for the treatment of chronic pain. alpha-Conotoxin GID is isolated from the venom of Conus geographus and has an unusual N-terminal tail sequence that has been shown to be important for binding to the alpha4beta2 subtype of the nAChR.
View Article and Find Full Text PDFMu-conotoxins are small peptide inhibitors of muscle and neuronal tetrodotoxin (TTX)-sensitive voltage-gated sodium channels (VGSCs). Here we report the isolation of mu-conotoxins SIIIA and SIIIB by (125)I-TIIIA-guided fractionation of milked Conus striatus venom. SIIIA and SIIIB potently displaced (125)I-TIIIA from native rat brain Na(v)1.
View Article and Find Full Text PDFThe high specificity of alpha-conotoxins for different neuronal nicotinic acetylcholine receptors makes them important probes for dissecting receptor subtype selectivity. New sequences continue to expand the diversity and utility of the pool of available alpha-conotoxins. Their identification and characterization depend on a suite of techniques with increasing emphasis on mass spectrometry and microscale chromatography, which have benefited from recent advances in resolution and capability.
View Article and Find Full Text PDFAn LC/MS analysis with diagnostic screening for the detection of peptides with posttranslational modifications revealed the presence of novel sulfated peptides within the alpha-conotoxin molecular mass range in Conus anemone crude venom. A functional assay of the extract showed activity at several neuronal nicotinic acetylcholine receptors (nAChRs). Three sulfated alpha-conotoxins (AnIA, AnIB, and AnIC) were identified by LC/MS and assay-directed fractionation and sequenced after purification.
View Article and Find Full Text PDFThe Xenopus laevis oocyte expression system was used to determine the activities of alpha-conotoxins EpI and the ribbon isomer of AuIB, on defined nicotinic acetylcholine receptors (nAChRs). In contrast to previous findings on intracardiac ganglion neurones, alpha-EpI showed no significant activity on oocyte-expressed alpha3beta4 and alpha3beta2 nAChRs but blocked the alpha7 nAChR with an IC50 value of 30 nM. A similar IC50 value (103 nM) was obtained on the alpha7/5HT3 chimeric receptor stably expressed in mammalian cells.
View Article and Find Full Text PDFUsing assay-directed fractionation of Conus geographus crude venom, we isolated alpha-conotoxin GID, which acts selectively at neuronal nicotinic acetylcholine receptors (nAChRs). Unlike other neuronally selective alpha-conotoxins, alpha-GID has a four amino acid N-terminal tail, gamma-carboxyglutamate (Gla), and hydroxyproline (O) residues, and lacks an amidated C terminus. GID inhibits alpha 7 and alpha 3 beta 2 nAChRs with IC(50) values of 5 and 3 nm, respectively and is at least 1000-fold less potent at the alpha 1 beta 1 gamma delta, alpha 3 beta 4, and alpha 4 beta 4 combinations.
View Article and Find Full Text PDF