Unlabelled: Polychromasia capsulare is a rare condition in which the anterior lens capsule exhibits an extraordinary array of colors during biomicroscopy that change with the incident angle of direct illumination consistent with iridescence. We present the case of a 59-year-old man with bilateral polychromasia capsulare who had successful cataract surgery. Routine light microscopy of the patient's capsulorhexis specimen was normal; however, transmission electron microscopy showed an unusual pattern of polygonal profiles with a periodicity estimated to be approximately 400 to 500 nm.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
January 2016
This study seeks to define and explain remodeling of the distal colon in the streptozotocin (STZ)-treated rat model of diabetes through analysis of resting and active length dependence of force production, chemical composition, and ultrastructure. Compared with untreated controls, the passive stiffness on extension of the diabetic muscle is high, and active force produced at short muscle lengths is amplified but is limited by an internal resistance to shortening. The latter are accounted for by a significant increase in collagen type 1, with no changes in types 3 and 4.
View Article and Find Full Text PDFAnat Rec (Hoboken)
September 2014
Smooth muscles forming the wall of tissues having conduit and reservoir functions (including blood vessels, intestinal tract, and stomach, gall bladder, urinary bladder, respectively) are organized into sheets or layers. The pathway for force transmission emanates from myosin interaction with actin filaments attached to intracellular dense bodies linked by the cytoskeleton to plasma membrane dense bodies which are adhesion sites for the extracellular matrix. The extracellular matrix is continuous throughout and between muscle layers, facilitating their coordinated function.
View Article and Find Full Text PDFJ Muscle Res Cell Motil
February 2013
This study determined the factors that limit force production and shortening in two smooth muscles having very different relationships between active and passive force as a function of muscle length. The rat anococcygeus muscle develops active force over the range of lengths 0.2-2.
View Article and Find Full Text PDFPermeabilized anterior byssus retractor muscles (ABRM) from Mytilus edulis were used as a simple system to test whether there is a stretch dependent activation of a kinase as has been postulated for titin and the mini-titin twitchin. The ABRM is a smooth muscle that shows catch, a condition of high force maintenance and resistance to stretch following stimulation when the intracellular Ca(++) concentration has diminished to sub-maximum levels. In the catch state twitchin is unphosphorylated, and the muscle maintains force without myosin crossbridge cycling through what is likely a twitchin mediated tether between thick and thin filaments.
View Article and Find Full Text PDFCatch force maintenance in invertebrate smooth muscles is probably mediated by a force-bearing tether other than myosin cross-bridges between thick and thin filaments. The phosphorylation state of the mini-titin twitchin controls catch. The C-terminal phosphorylation site (D2) of twitchin with its flanking Ig domains forms a phosphorylation-sensitive complex with actin and myosin, suggesting that twitchin is the tether (Funabara, D.
View Article and Find Full Text PDFJ Biomed Biotechnol
October 2010
Catch is a mechanical state occurring in some invertebrate smooth muscles characterized by high force maintenance and resistance to stretch during extremely slow relaxation. During catch, intracellular calcium is near basal concentration and myosin crossbridge cyctng rate is extremely slow. Catch force is relaxed by a protein kinase A-mediated phosphorylation of sites near the N- and C- temini of the minititin twitchin (approximately 526 kDa).
View Article and Find Full Text PDFCatch force in molluscan smooth muscle requires little, if any, energy input and is controlled by the phosphorylation state of the thick filament-associated mini-titin, twitchin. The kinetic parameters of myosin cross-bridge turnover in permeabilized catch muscle, and how they are potentially modified by the catch mechanism, were determined by single turnover measurements on myosin-bound ADP. Under isometric conditions, there are fast and slow components of cross-bridge turnover that probably result from kinetic separation of calcium-bound and calcium-free cross-bridge pools.
View Article and Find Full Text PDFCatch is characterized by maintenance of force with very low energy utilization in some invertebrate muscles. Catch is regulated by phosphorylation of the mini-titin, twitchin, and a catch component of force exists at all [Ca2+] except those resulting in maximum force. The mechanism responsible for catch force was characterized by determining how the effects of agents that inhibit the low to high force transition of the myosin cross-bridge (inorganic phosphate, butanedione monoxime, trifluoperazine, and blebbistatin) are modified by twitchin phosphorylation and [Ca2+].
View Article and Find Full Text PDFJ Muscle Res Cell Motil
January 2007
Molluscan catch muscle can maintain tension for a long time with little energy consumption. This unique phenomenon is regulated by phosphorylation and dephosphorylation of twitchin, a member of the titin/connectin family. The catch state is induced by a decrease of intracellular Ca2+ after the active contraction and is terminated by the phosphorylation of twitchin by the cAMP-dependent protein kinase (PKA).
View Article and Find Full Text PDFThe phosphorylation state of the myosin thick filament-associated mini-titin, twitchin, regulates catch force maintenance in molluscan smooth muscle. The full-length cDNA for twitchin from the anterior byssus retractor muscle of the mussel Mytilus was obtained using PCR and 5'rapid amplification of cDNA ends, and its derived amino acid sequence showed a large molecule ( approximately 530 kDa) with a motif arrangement as follows: (Ig)11(IgFn2)2Ig(Fn)3Ig(Fn)2Ig(Fn)3(Ig)2(Fn)2(Ig)2 FnKinase(Ig)4. Other regions of note include a 79-residue sequence between Ig domains 6 and 7 (from the N terminus) in which more than 60% of the residues are Pro, Glu, Val, or Lys and between the 7th and 8th Ig domains, a DFRXXL motif similar to that thought to be necessary for high affinity binding of myosin light chain kinase to F-actin.
View Article and Find Full Text PDF