Publications by authors named "Marion J Gijbels"

Over the past years, insights in the cancer neuroscience field increased rapidly, and a potential role for neurons in colorectal carcinogenesis has been recognized. However, knowledge on the neuronal distribution, subtypes, origin, and associations with clinicopathological characteristics in human studies is sparse. In this study, colorectal tumor tissues from the Netherlands Cohort Study on diet and cancer (n = 490) and an in-cohort validation population (n = 529) were immunohistochemically stained for the pan-neuronal markers neurofilament (NF) and protein gene product 9.

View Article and Find Full Text PDF
Article Synopsis
  • * In a study with mice, those with CKD and receiving PD showed more severe atherosclerosis, characterized by larger plaque areas and vulnerable phenotypes, indicating advanced disease.
  • * The presence of specific types of inflammatory T-cells was heightened in CKD+PD mice, suggesting that targeting these immune responses could help reduce atherosclerosis in patients undergoing PD.
View Article and Find Full Text PDF

The enteric nervous system (ENS) is a large and complex part of the peripheral nervous system, and it is vital for gut homeostasis. To study the ENS, different hyper- and hypo-innervated model systems have been developed. The NSE-Noggin mouse model was described as one of the few models with a higher enteric neuronal density in the colon.

View Article and Find Full Text PDF

Extracellular histones have been shown to act as DAMPs in a variety of inflammatory diseases. Moreover, they have the ability to induce cell death. In this study, we show that M6229, a low-anticoagulant fraction of unfractionated heparin (UFH), rescues rats that were challenged by continuous infusion of calf thymus histones at a rate of 25 mg histones/kg/h.

View Article and Find Full Text PDF

Inflammatory macrophages are key drivers of atherosclerosis that can induce rupture-prone vulnerable plaques. Skewing the plaque macrophage population towards a more protective phenotype and reducing the occurrence of clinical events is thought to be a promising method of treating atherosclerotic patients. In the current study, we investigate the immunomodulatory properties of itaconate, an immunometabolite derived from the TCA cycle intermediate cis-aconitate and synthesised by the enzyme Aconitate Decarboxylase 1 (ACOD1, also known as IRG1), in the context of atherosclerosis.

View Article and Find Full Text PDF

Background: The metabolic alterations occurring within the arterial architecture during atherosclerosis development remain poorly understood, let alone those particular to each arterial tunica. We aimed first to identify, in a spatially resolved manner, the specific metabolic changes in plaque, media, adventitia, and cardiac tissue between control and atherosclerotic murine aortas. Second, we assessed their translatability to human tissue and plasma for cardiovascular risk estimation.

View Article and Find Full Text PDF

The prognosis of colorectal cancer patients with peritoneal metastases is very poor. Intraperitoneal drug delivery systems, like supramolecular hydrogels, are being developed to improve local delivery and intraperitoneal residence time of a cytostatic such as mitomycin C (MMC). In this study, we evaluate the effect of intraperitoneal hydrogel administration on anastomotic healing.

View Article and Find Full Text PDF

Patients with peritoneal metastases (PM) of colorectal cancer have a very poor outcome. Intraperitoneal delivery of chemotherapy is the preferred route for PM treatment. The main limitation of the treatment options is the short residence time of the cytostatic, with subsequent short exposure of the cancer cells.

View Article and Find Full Text PDF

Local intraperitoneal drug administration is considered a challenging drug delivery route. The therapeutic efficiency is low, mainly due to rapid clearance of drugs. To increase the intraperitoneal retention time of specific drugs, a pH-sensitive supramolecular hydrogel that can act as a drug delivery vehicle is developed.

View Article and Find Full Text PDF

Introduction: The transmembrane protease A Disintegrin And Metalloproteinase 10 (ADAM10) displays a "pattern regulatory function," by cleaving a range of membrane-bound proteins. In endothelium, it regulates barrier function, leukocyte recruitment and angiogenesis. Previously, we showed that ADAM10 is expressed in human atherosclerotic plaques and associated with neovascularization.

View Article and Find Full Text PDF

Aims: Specific fibroblast markers and in-depth heterogeneity analysis are currently lacking, hindering functional studies in cardiovascular diseases (CVDs). Here, we established cell-type markers and heterogeneity in murine and human arteries and studied the adventitial fibroblast response to CVD and its risk factors hypercholesterolaemia and ageing.

Methods And Results: Murine aorta single-cell RNA-sequencing analysis of adventitial mesenchymal cells identified fibroblast-specific markers.

View Article and Find Full Text PDF

Cells often adopt different phenotypes, dictated by tissue-specific or local signals such as cell-cell and cell-matrix contacts or molecular micro-environment. This holds in extremis for macrophages with their high phenotypic plasticity. Their broad range of functions, some even opposing, reflects their heterogeneity, and a multitude of subsets has been described in different tissues and diseases.

View Article and Find Full Text PDF

Background: Failure of fascial healing in the abdominal wall can result in incisional hernia, which is one of the most common complications after laparotomy. Understanding the molecular healing process of abdominal fascia may provide lipid markers of incisional hernia or therapeutic targets that allow prevention or treatment of incisional hernias.

Purpose: This study aims to investigate temporal and in situ changes of lipids during the normal healing process of abdominal fascia in the first postoperative week.

View Article and Find Full Text PDF

Background: The protein 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) is a key stimulator of glycolytic flux. Systemic, partial PFKFB3 inhibition previously decreased total plaque burden and increased plaque stability. However, it is unclear which cell type conferred these positive effects.

View Article and Find Full Text PDF

Background & Aims: The lysosomal enzyme, cathepsin D (CTSD) has been implicated in the pathogenesis of non-alcoholic steatohepatitis (NASH), a disease characterised by hepatic steatosis and inflammation. We have previously demonstrated that specific inhibition of the extracellular CTSD leads to improved metabolic features in Sprague-Dawley rats with steatosis. However, the individual roles of extracellular and intracellular CTSD in NASH are not yet known.

View Article and Find Full Text PDF

Aims: Atherosclerotic plaque hypoxia is detrimental for macrophage function. Prolyl hydroxylases (PHDs) initiate cellular hypoxic responses, possibly influencing macrophage function in plaque hypoxia. Thus, we aimed to elucidate the role of myeloid PHDs in atherosclerosis.

View Article and Find Full Text PDF

The N-Myc Downstream-Regulated Gene 4 (NDRG4), a prominent biomarker for colorectal cancer (CRC), is specifically expressed by enteric neurons. Considering that nerves are important members of the tumor microenvironment, we here establish different Ndrg4 knockout (Ndrg4 ) CRC models and an indirect co-culture of primary enteric nervous system (ENS) cells and intestinal organoids to identify whether the ENS, via NDRG4, affects intestinal tumorigenesis. Linking immunostainings and gastrointestinal motility (GI) assays, we show that the absence of Ndrg4 does not trigger any functional or morphological GI abnormalities.

View Article and Find Full Text PDF

Background And Aims: Obese individuals have a higher risk of developing atherosclerosis, possibly driven by adipose tissue (AT) inflammation. We recently showed that AT macrophages (ATMs), which accumulate in the expanding obese AT, produce mediators causing immune cell recruitment from the bone marrow. In the current study, we evaluated whether ATMs are directly involved in atherosclerotic plaque development.

View Article and Find Full Text PDF

Non-alcoholic fatty liver disease is a spectrum of liver diseases ranging from steatosis only to non-alcoholic steatohepatitis (NASH). The latter is characterized by hepatic inflammation, which increases the risk of cardiovascular disease. It is poorly understood which factors contribute to the onset of hepatic inflammation characterizing the progression from steatosis to NASH.

View Article and Find Full Text PDF

Background: Disrupting the costimulatory CD40-CD40L dyad reduces atherosclerosis, but can result in immune suppression. The authors recently identified small molecule inhibitors that block the interaction between CD40 and tumor necrosis factor receptor-associated factor (TRAF) 6 (TRAF-STOPs), while leaving CD40-TRAF2/3/5 interactions intact, thereby preserving CD40-mediated immunity.

Objectives: This study evaluates the potential of TRAF-STOP treatment in atherosclerosis.

View Article and Find Full Text PDF

Background: Intestinal failure-associated liver disease (IFALD) is a clinical challenge. The pathophysiol-ogy is multifactorial and remains poorly understood. Disturbed recirculation of bile salts, due to loss of bile via an enterocutaneous fistula, is considered a major contributing factor.

View Article and Find Full Text PDF

Although A Disintegrin And Metalloproteinase 8 (ADAM8) is not crucial for tissue development and homeostasis, it has been implicated in various inflammatory diseases by regulating processes like immune cell recruitment and activation. ADAM8 expression has been associated with human atherosclerosis development and myocardial infarction, however a causal role of ADAM8 in atherosclerosis has not been investigated thus far. In this study, we examined the expression of ADAM8 in early and progressed human atherosclerotic lesions, in which ADAM8 was significantly upregulated in vulnerable lesions.

View Article and Find Full Text PDF

Constitutive photomorphogenesis 9 (COP9) signalosome 5 (CSN5), an isopeptidase that removes neural precursor cell-expressed, developmentally down-regulated 8 (NEDD8) moieties from cullins (thus termed "deNEDDylase") and a subunit of the cullin-RING E3 ligase-regulating COP9 signalosome complex, attenuates proinflammatory NF-κB signaling. We previously showed that CSN5 is up-regulated in human atherosclerotic arteries. Here, we investigated the role of CSN5 in atherogenesis in vivo by using mice with myeloid-specific deletion.

View Article and Find Full Text PDF

Non-alcoholic steatohepatitis (NASH) is characterized by liver lipid accumulation and inflammation. The mechanisms that trigger hepatic inflammation are poorly understood and subsequently, no specific non-invasive markers exist. We previously demonstrated a reduction in the plasma lysosomal enzyme, cathepsin D (CatD), in children with NASH compared to children without NASH.

View Article and Find Full Text PDF