According to the World Health Organization (WHO), depressive disorders are currently considered as one of the most disabling medical conditions in the world with one of the highest disability-adjusted life years [1] and this situation has apparently been further worsened during the COVID-19 pandemic [2]. Up to two thirds of patients with major depressive disorders (MDD) do not achieve full remission following an adequate first line standard of care and/or experience residual symptoms such as anxiety, impaired cognition, fatigue, sleep disturbance, or anhedonia [3]. Several attempts are often needed to find the most suitable treatment [4].
View Article and Find Full Text PDFCriteria for treatment-resistant depression (TRD) and partially responsive depression (PRD) as subtypes of major depressive disorder (MDD) are not unequivocally defined. In the present document we used a Delphi-method-based consensus approach to define TRD and PRD and to serve as operational criteria for future clinical studies, especially if conducted for regulatory purposes. We reviewed the literature and brought together a group of international experts (including clinicians, academics, researchers, employees of pharmaceutical companies, regulatory bodies representatives, and one person with lived experience) to evaluate the state-of-the-art and main controversies regarding the current classification.
View Article and Find Full Text PDFWhen Alzheimer's disease (AD) disease-modifying therapies will be available, global healthcare systems will be challenged by a large-scale demand for clinical and biological screening. Validation and qualification of globally accessible, minimally-invasive, and time-, cost-saving blood-based biomarkers need to be advanced. Novel pathophysiological mechanisms (and related candidate biomarkers) - including neuroinflammation pathways (TREM2 and YKL-40), axonal degeneration (neurofilament light chain protein), synaptic dysfunction (neurogranin, synaptotagmin, α-synuclein, and SNAP-25) - may be integrated into an expanding pathophysiological and biomarker matrix and, ultimately, integrated into a comprehensive blood-based liquid biopsy, aligned with the evolving ATN + classification system and the precision medicine paradigm.
View Article and Find Full Text PDFAlzheimer's disease (AD)-a complex disease showing multiple pathomechanistic alterations-is triggered by nonlinear dynamic interactions of genetic/epigenetic and environmental risk factors, which, ultimately, converge into a biologically heterogeneous disease. To tackle the burden of AD during early preclinical stages, accessible blood-based biomarkers are currently being developed. Specifically, next-generation clinical trials are expected to integrate positive and negative predictive blood-based biomarkers into study designs to evaluate, at the individual level, target druggability and potential drug resistance mechanisms.
View Article and Find Full Text PDFDevelopment of novel therapies for Duchenne muscular dystrophy (DMD) are driving the need for more efficient ways of detecting changes in disease- progression in DMD [1]. However, medicines' approval must be based on outcome measures that are acceptable from a regulatory perspective. In this article, European regulators provide an update on the recent regulatory consideration of a new endpoint (Stride Velocity 95th Centile (SV95C)) that could be used in therapeutic DMD trials.
View Article and Find Full Text PDFThe complex multifactorial nature of polygenic Alzheimer's disease (AD) presents significant challenges for drug development. AD pathophysiology is progressing in a non-linear dynamic fashion across multiple systems levels - from molecules to organ systems - and through adaptation, to compensation, and decompensation to systems failure. Adaptation and compensation maintain homeostasis: a dynamic equilibrium resulting from the dynamic non-linear interaction between genome, epigenome, and environment.
View Article and Find Full Text PDFRegulatory agencies have a key role in facilitating the development of new drugs for Alzheimer disease, particularly given the challenges associated with early intervention. Here, we highlight the strategies of the European Medicines Agency to help address such challenges.
View Article and Find Full Text PDFFlorbetapir (18F) for brain amyloid positron emission tomography (PET) imaging has been recently approved in Europe to estimate β-amyloid neuritic plaque density in the brain when the subject is still alive. Such density is one of the key issues for the definitive diagnosis of Alzheimer's disease (AD) at autopsy. This capability of florbetapir (18F) is regarded as a significant improvement in the diagnostic procedures for adult patients with cognitive impairment who are being evaluated for AD and other causes of cognitive impairment.
View Article and Find Full Text PDF