Cells release extracellular vesicles (EVs) to communicate in a paracrine manner with other cells, and thereby influence processes, such as angiogenesis. The conditioned medium of human cardiac-derived adherent proliferating (CardAP) cells was recently shown to enhance angiogenesis. To elucidate whether their released EVs are involved, we isolated them by differential centrifugation from the conditioned medium derived either in the presence or absence of a pro-inflammatory cytokine cocktail.
View Article and Find Full Text PDFRising numbers of patients with cardiovascular diseases and limited availability of donor hearts require new and improved therapy strategies. Human atrial appendage-derived cells (hAACs) are promising candidates for an allogeneic cell-based treatment. In this study, we evaluated their inductive and modulatory capacity regarding immune responses and underlying key mechanisms .
View Article and Find Full Text PDFBackground: Nano-sized vesicles, so called extracellular vesicles (EVs), from regenerative cardiac cells represent a promising new therapeutic approach to treat cardiovascular diseases. However, it is not yet sufficiently understood how cardiac-derived EVs facilitate their protective effects. Therefore, we investigated the immune modulating capabilities of EVs from human cardiac-derived adherent proliferating (CardAP) cells, which are a unique cell type with proven cardioprotective features.
View Article and Find Full Text PDFCardiac-derived adherent proliferating (CardAP) cells obtained from endomyocardial biopsies (EMBs) with known anti-fibrotic and pro-angiogenic properties are good candidates for the autologous therapy of end-stage cardiac diseases such as dilated cardiomyopathy. However, due to the limited number of CardAP cells that can be obtained from EMBs, our aim is to isolate cells with similar properties from other regions of the heart with comparable tissue architecture. Here, we introduce the atrial appendage as a candidate region.
View Article and Find Full Text PDFUnlabelled: : Cardiac-derived adherent proliferating cells (CardAPs) are cells derived from human endomyocardial biopsy specimens; they share several properties with mesenchymal stromal cells. The aims of this study were to evaluate whether intramyocardial injection of CardAPs modulates cardiac fibrosis and hypertrophy in a mouse model of angiotensin II (Ang II)-induced systolic heart failure and to analyze underlying mechanisms. Intramyocardial application of 200,000 CardAPs improved left ventricular function.
View Article and Find Full Text PDFThe negligible self-repair potential of the myocardium has led to cell-based tissue engineering approaches to restore heart function. There is more and more consensus that, in addition to cell development, paracrine effects in particular play a pivotal role in the repair of heart tissue. Here, we present two complementary murine P19 and P19CL6 embryonic carcinoma cell-based in vitro test approaches to study the potential of repair cells and the factors secreted by these cells to induce cardiomyogenesis.
View Article and Find Full Text PDFCardiac-directed cell therapies show potential to reduce mortality and morbidity in heart disease. However, high functional efficacy should be complimented with low immunogenicity, in particular if allogeneic cell sources are applied. Therefore, we aimed to examine cardiac-derived adherent proliferating (CAP) cells with respect to their immunogenicity and immune modulatory features in vitro.
View Article and Find Full Text PDFBackground: Under conventional heart failure therapy, inflammatory cardiomyopathy typically has a progressive course, indicating a need for alternative therapeutic strategies to improve long-term outcomes. We recently isolated and identified novel cardiac-derived cells from human cardiac biopsies: cardiac-derived adherent proliferating cells (CAPs). They have similarities with mesenchymal stromal cells, which are known for their anti-apoptotic and immunomodulatory properties.
View Article and Find Full Text PDFIn situ tissue engineering is a promising approach in regenerative medicine, with the possibility that adult stem or progenitor cells will be guided chemotactically to a tissue defect and subsequently differentiate into the surrounding tissue type. Mesenchymal stem cells (MSC) represent attractive candidate cells. Chemokines such as CXCL12 (SDF-1alpha) chemoattract MSC, but little is known about the molecular processes involved in the chemotaxis and migration of MSC.
View Article and Find Full Text PDFThe cytokine interleukin-16 is generated by posttranscriptional cleavage by caspase-3 of two large precursor isoforms. The smaller protein of 67 kDa (pro-IL-16) is expressed in cells of the immune system and contains three PDZ (postsynaptic density/disc large/zona occludens-1) domains, whereas the larger 141-kDa neuronal variant (npro-IL-16) has two additional PDZ domains in its N-terminal extension that interact with neuronal ion channels. Using the yeast two-hybrid approach we have identified three closely related myosin phosphatase targeting subunits, MYPT1, MYPT2, and MBS85, as binding partners of the IL-16 precursor proteins.
View Article and Find Full Text PDF