Unlabelled: Older drivers face the prospect of having to adjust their driving habits because of health problems, which can include neurocognitive disorders. Self-awareness of driving difficulties and the interaction between individual with neurocognitive disorders and natural caregiver seem to be important levers for the implementation of adaptation strategies and for the subsequent voluntary cessation of driving when the cognitive disorders become too severe. This study aims to evaluate an educational program for patient/natural caregiver dyads who wish to implement self-regulation strategies in driving activity, and to improve self-awareness of driving ability.
View Article and Find Full Text PDFBody movements are invariably accompanied by various proprioceptive, visual, tactile and/or motor signals. It is therefore difficult to completely dissociate these various signals from each other in order to study their specific involvement in the perception of movement (kinaesthesia). Here, we manipulated visual motion signals in a virtual reality display by using a humanoid avatar.
View Article and Find Full Text PDFIn the perception of self-motion, visual cues originating from an embodied humanoid avatar seen from a first-person perspective (1-PP) are processed in the same way as those originating from a person's own body. Here, we sought to determine whether the user's and avatar's bodies in virtual reality have to be colocalized for this visual integration. In Experiment 1, participants saw a whole-body avatar in a virtual mirror facing them.
View Article and Find Full Text PDFA person's internal representation of his/her body is not fixed. It can be substantially modified by neurological injuries and can also be extended (in healthy participants) to incorporate objects that have a corporeal appearance (such as fake body segments, e.g.
View Article and Find Full Text PDFHumans can recognize living organisms and understand their actions solely on the basis of a small animated set of well-positioned points of light, i.e. by recognizing biological motion.
View Article and Find Full Text PDFThe reflection of passive arm displacement in a mirror is a powerful means of inducing a kinaesthetic illusion in the static arm hidden behind the mirror. Our recent research findings suggest that this illusion is not solely visual in origin but results from the combination of visual and proprioceptive signals from the two arms. To determine the respective contributions of visual and proprioceptive signals to this illusion, we reproduced the mirror paradigm in virtual reality.
View Article and Find Full Text PDF