Publications by authors named "Marion E Pucher"

Background: Due to its capability to secrete large quantities of plant biomass degrading enzymes (PBDE), is widely applied for industrial purposes. In nature, expression of PBDE is efficiently regulated in this fungus. Several factors involved in this regulatory network have been identified.

View Article and Find Full Text PDF

Background: Trichoderma reesei is used for industry-scale production of plant cell wall-degrading enzymes, in particular cellulases, but also xylanases. The expression of the encoding genes was so far primarily investigated on the level of transcriptional regulation by regulatory proteins. Otherwise, the impact of chromatin remodelling on gene expression received hardly any attention.

View Article and Find Full Text PDF

(anamorph ) is a saprophytic fungus that produces hydrolases, which are applied in different types of industries and used for the production of biofuel. A recombinant strain, which constantly expresses the main transcription activator of hydrolases (Xylanase regulator 1), was found to grow faster on xylan and its monomeric backbone molecule d-xylose. This strain also showed improved ability of clearing xylan medium on plates.

View Article and Find Full Text PDF

For Hypocrea jecorina (anamorph Trichoderma reesei), a filamentous fungus used for hydrolase production in different industries, it has been a long-term practice to use d-xylose as an inducing substance. We demonstrate in this study that the degree of xylanase-encoding gene induction strictly depends on the concentration of d-xylose, which was found to be optimal from 0.5 to 1 mM for 3 h of cultivation.

View Article and Find Full Text PDF

Galpha subunits act to regulate vegetative growth, conidiation, and the mycoparasitic response in Trichoderma atroviride. To extend our knowledge on G protein signalling, we analysed G protein-coupled receptors (GPCRs). As the genome sequence of T.

View Article and Find Full Text PDF

In Hypocrea jecorina, Xyr1 (xylanase regulator 1) is the main transcription activator of hydrolase-encoding genes, such as xyn1, xyn2, bxl1, cbh1, cbh2, egl1, and bgl1. Even though Xyr1 mediates the induction signal for all these genes derived from various inducing carbon sources and compounds, xyr1 transcription itself is not inducible by any of these substances. However, cultivation on glucose as the carbon source provokes carbon catabolite repression of xyr1 transcription mediated by Cre1.

View Article and Find Full Text PDF