Publications by authors named "Marion Cranney"

We report herein the structural properties and nitroaromatic sensing performances of fluorescent thin films formed by alternating donor-acceptor π-conjugated chromophores. The incorporation of a flexible one-dimensional alkyl chain in the chromophore backbone drastically accelerates by more than one order of magnitude the sensing dynamics for the detection of 2,4-dinitrotoluene (DNT) vapors.

View Article and Find Full Text PDF

The photophysical and nonlinear absorption properties of an oligo(phenylenethienylene)s series (nTBT) are investigated in this article. The length of the chromophore is gradually increased from one to four phenylenethienylene repeating units in order to evaluate the effects of the electronic delocalization on the two-photon absorption cross sections (δ). According to the excitation anisotropy measurements and quantum chemical calculations, two electronic transitions with distinctive symmetries, 1Ag → 1Bu and 1Ag → 2Ag, are present in the low energy region of the linear absorption spectrum.

View Article and Find Full Text PDF

Self-assembly of conjugated 2,5-dialkoxy-phenylene-thienylene-based oligomers on epitaxial monolayer graphene was studied in ultrahigh vacuum by low-temperature scanning tunneling microscopy (STM). The formation of long one-dimensional (1D) supramolecular chain-like structures has been observed, associated to a physical linking of their ends which involved the rotation of the end thiophene rings in order to allow π-π stacking of these end-groups. dI/dV maps taken at an energy corresponding to the excited states showed a continuous electronic density of states, which tentatively suggests that within such molecular chains conjugation of electrons is preserved even across physically linked molecules.

View Article and Find Full Text PDF

Photoinduced trans-cis isomerization studies of stilbene molecules in the gas phase have led to a precise understanding of the corresponding molecular dynamics. Yet, when such molecules are adsorbed on surfaces, these reactions are expected to be strongly modified as compared to what is know in the gas phase. In this work, a low temperature (5 K) scanning tunneling microscope (STM) is used to image the trans-stilbene molecules deposited on a Si(100)-2 x 1 surface at 12 K.

View Article and Find Full Text PDF