Publications by authors named "Marion C Lang"

Single cell analysis is crucial for elucidating cellular diversity and heterogeneity as well as for medical diagnostics operating at the ultimate detection limit. Although superbly sensitive biosensors have been developed using the strongly enhanced evanescent fields provided by optical microcavities, real-time quantification of intracellular molecules remains challenging due to the extreme low quantity and limitations of the current techniques. Here, we introduce an active-mode optical microcavity sensing stage with enhanced sensitivity that operates via Förster resonant energy transferring (FRET) mechanism.

View Article and Find Full Text PDF

Black phosphorus (BP) has attracted much attention as a new member of 2D materials due to its unique electronic and optical properties and a wide range of promising applications. Here, for the first time, we report the photoluminescence lifetime of BP nanomaterial and its applications as an efficient agent for live cell imaging. With a lateral size of ∼35 nm and a thickness of ∼6 nm, the fabricated BP nanoparticles (BPNPs) exhibited a unique photoluminescent (PL) emission at ∼690 nm.

View Article and Find Full Text PDF

Practical 4Pi microscopy has so far exclusively relied on multiphoton excitation of fluorescence, because the nonlinear suppression of contributions from higher-order sidelobes was mandatory for unambiguous axial superresolution. We show that novel lenses of 74 degrees semiaperture angle enable biological 4Pi microscopy with regular one-photon fluorescence excitation, thus increasing the signal and reducing system complexity and cost. An axial resolution of 95 nm, corresponding to a more than fourfold improvement over confocal microscopy, is verified in the imaging of microtubules in mammalian cells.

View Article and Find Full Text PDF

The use of high numerical aperture immersion lenses in optical microscopy is compromised by spherical aberrations induced by the refractive index mismatch between the immersion system and the embedding medium of the sample. Especially when imaging >10 micro m deep into the specimen, the refractive index mismatch results in a noticeable loss of image brightness and resolution. A solution to this problem is to adapt the index of the embedding medium to that of the immersion system.

View Article and Find Full Text PDF