Publications by authors named "Marion Bonnet"

The strains Marseille-Q7072 (= CSUR Q7072 = CECT 30604) and Marseille-Q7826 (= CSUR Q7826 = CECT 30727) were isolated from vaginal samples. As MALDI-TOF mass spectrometry failed to identify them, their genomes were directly sequenced to determine their taxogenomic identities. Both strains are anaerobic without any oxidase and catalase activity.

View Article and Find Full Text PDF

An isolate of a bacterium recovered from an endometrial biopsy failed to be identified by MALDI-TOF mass spectrometry and was subjected to 16S rRNA sequencing. The obtained sequence was compared by BLASTn against the NCBI database, which revealed that the most closely related species was Cellulomonas hominis and Cellulomonas pakistanensis, with 98.85% and 98.

View Article and Find Full Text PDF

Introduction: Breath testing has become a widely used tool to diagnose small intestinal bacterial overgrowths (SIBOs) and intestinal methanogen overgrowths (IMOs) in clinical settings. Owing to the heterogeneity in clinical manifestations and lack of standardization among centers performing breath testing, SIBO and IMO can be easily overlooked by the clinician. We studied the prevalence and symptoms of SIBO/IMO in French patients referred for breath testing after seeking medical advice.

View Article and Find Full Text PDF

An increasing number of studies have provided strong evidence that gut microbiota interact with the immune system and stimulate various mechanisms involved in the pathogenesis of auto-immune diseases such as Systemic Lupus Erythematosus (SLE). Indeed, gut microbiota could be a source of diagnostic and prognostic biomarkers but also hold the promise to discover novel therapeutic strategies. Thus far, specific SLE microbial signatures have not yet been clearly identified with alteration patterns that may vary between human and animal studies.

View Article and Find Full Text PDF

Microbiotas play critical roles in human health, yet in most cases scientists lack standardized and reproducible methods from collection and preservation of samples, as well as the choice of omic analysis, up to the data processing. To date, stool sample preservation remains a source of technological bias in metagenomic sequencing, despite newly developed storage solutions. Here, we conducted a comparative study of 10 storage methods for human stool over a 14-day period of storage at fluctuating temperatures.

View Article and Find Full Text PDF

The main avenue for the development of an HIV-1 vaccine remains the induction of protective antibodies. A rationale approach is to target antigen to specific receptors on dendritic cells (DC) via fused monoclonal antibodies (mAb). In mouse and non-human primate models, targeting of skin Langerhans cells (LC) with anti-Langerin mAbs fused with HIV-1 Gag antigen drives antigen-specific humoral responses.

View Article and Find Full Text PDF

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a well-known apoptosis inducer and a potential anticancer agent. When caspases and inhibitors of apoptosis proteins (IAPs) are inhibited, TRAIL induces necroptosis. Molecular mechanisms of necroptosis rely on kinase activation, and on the formation of a necrosome complex, bringing together the receptor-interacting protein kinases 1 and 3 (RIPK1, RIPK3), and the mixed lineage kinase domain-like protein (MLKL).

View Article and Find Full Text PDF

The last 5 years have seen a turning point in the study of the gut microbiota with a rebirth of culture-dependent approaches to study the gut microbiota. High-throughput methods have been developed to study bacterial diversity with culture conditions aimed at mimicking the gut environment by using rich media such as YCFA (yeast extract, casein hydrolysate, fatty acids) and Gifu anaerobic medium in an anaerobic workstation, as well as media enriched with rumen and blood and coculture, to mimic the symbiosis of the gut microbiota. Other culture conditions target phenotypic and metabolic features of bacterial species to facilitate their isolation.

View Article and Find Full Text PDF

Archaeal sequences have been detected in human colostrum and milk, but no studies have determined whether living archaea are present in either of these fluids. Methanogenic archaea are neglected since they are not detected by usual molecular and culture methods. By using improved DNA detection protocols and microbial culture techniques associated with antioxidants previously developed in our center, we investigated the presence of methanogenic archaea using culture and specific Methanobrevibacter smithii and Methanobrevibacter oralis real-time PCR in human colostrum and milk.

View Article and Find Full Text PDF

Necroptosis is a regulated form of cell death involved in several disease models including in particular liver diseases. Receptor-interacting protein kinases, RIPK1 and RIPK3, are the main serine/threonine kinases driving this cell death pathway. We screened a noncommercial, kinase-focused chemical library which allowed us to identify Sibiriline as a new inhibitor of necroptosis induced by tumor necrosis factor (TNF) in Fas-associated protein with death domain (FADD)-deficient Jurkat cells.

View Article and Find Full Text PDF

Glucokinase (Gck) is a critical regulator of glucose-induced insulin secretion by pancreatic β-cells. It has been suggested to also play an important role in glucose signaling in neurons of the ventromedial hypothalamic nucleus (VMN), a brain nucleus involved in the control of glucose homeostasis and feeding. To test the role of Gck in VMN glucose sensing and physiological regulation, we studied mice with genetic inactivation of the Gck gene in Sf1 neurons of the VMN (Sf1Gck(-/-) mice).

View Article and Find Full Text PDF

CYLD is a tumour suppressor gene mutated in familial cylindromatosis, a genetic disorder leading to the development of skin appendage tumours. It encodes a deubiquitinating enzyme that removes Lys63- or linear-linked ubiquitin chains. CYLD was shown to regulate cell proliferation, cell survival and inflammatory responses, through various signalling pathways.

View Article and Find Full Text PDF

Type 2 diabetes (T2D) represents a significant global epidemic with more than 285 million people affected worldwide. Regulating glycemia in T2D patients can be partially achieved with currently available treatment, but intensive research during the last decades have led to the discovery of modified compounds or new targets that could represent great hope for safe and effective treatment in the future. Among them, targets in the CNS that are known to control feeding and body weight have been also shown to exert glucoregulatory actions, and could be a key in the development of a new generation of drugs in the field of T2D.

View Article and Find Full Text PDF

Psoriasis is a common chronic inflammatory skin disease with a prevalence of about 2% in the Caucasian population. Tumor necrosis factor (TNF) plays an essential role in the pathogenesis of psoriasis, but its mechanism of action remains poorly understood. Here we report that the development of psoriasis-like skin inflammation in mice with epidermis-specific inhibition of the transcription factor NF-κB was triggered by TNF receptor 1 (TNFR1)-dependent upregulation of interleukin-24 (IL-24) and activation of signal transducer and activator of transcription 3 (STAT3) signaling in keratinocytes.

View Article and Find Full Text PDF

Brainstem structures such as the nucleus of the solitary tract (NTS) and the dorsal motor nucleus of the vagus nerve (DMNX) are essential for the digestive function of the stomach. A large number of neurotransmitters including glutamate and gamma-aminobutyric acid (GABA) are involved in the central control of gastric functions. However, the neuropeptidergic systems implicated in this process remain undetermined.

View Article and Find Full Text PDF

Perturbances in skin homeostasis are responsible for the development of skin inflammatory diseases such as psoriasis or atopic dermatitis. While the role of apoptosis has been extensively studied in the skin, the role of the newly described programmed necrosis also termed necroptosis in human skin remains poorly understood. We have recently described a mouse model of skin inflammation dependent on necroptotic cell death.

View Article and Find Full Text PDF

Epidermal keratinocytes provide an essential structural and immunological barrier forming the first line of defense against potentially pathogenic microorganims. Mechanisms regulating barrier integrity and innate immune responses in the epidermis are important for the maintenance of skin immune homeostasis and the pathogenesis of inflammatory skin diseases. Cell death, and in particular, apoptosis, has been suggested to play a key role in numerous skin inflammatory diseases.

View Article and Find Full Text PDF

Deoxynivalenol (DON), mainly produced by Fusarium fungi, and also commonly called vomitoxin, is a trichothecene mycotoxin. It is one of the most abundant trichothecenes which contaminate cereals consumed by farm animals and humans. The extent of cereal contamination is strongly associated with rainfall and moisture at the time of flowering and with grain storage conditions.

View Article and Find Full Text PDF

Deoxynivalenol (DON), produced by the cereal-contaminating Fusarium fungi, is a major trichothecene responsible for mycotoxicoses in farm animals, including swine. The main effect of DON-intoxication is food intake reduction and the consequent body weight loss. The present study aimed to identify brain structures activated during DON intoxication in pigs.

View Article and Find Full Text PDF

Physiological regulations of energy balance and body weight imply highly adaptive mechanisms which match caloric intake to caloric expenditure. In the central nervous system, the regulation of appetite relies on complex neurocircuitry which disturbance may alter energy balance and result in anorexia or obesity. Deoxynivalenol (DON), a trichothecene, is one of the most abundant mycotoxins found on contaminated cereals and its stability during processing and cooking explains its widespread presence in human food.

View Article and Find Full Text PDF

Epidermal keratinocytes provide an essential structural and immunological barrier forming the first line of defense against potentially pathogenic microorganisms. Mechanisms regulating barrier integrity and innate immune responses in the epidermis are important for the maintenance of skin immune homeostasis and the pathogenesis of inflammatory skin diseases. Here, we show that epidermal keratinocyte-restricted deficiency of the adaptor protein FADD (FADD(E-KO)) induced severe inflammatory skin lesions in mice.

View Article and Find Full Text PDF