Publications by authors named "Mariola Chacon"

Proper chromosome segregation is essential to avoid aneuploidy, yet this process fails with increasing age in mammalian oocytes. Here we report a role for the scarcely described protein CENP-V in oocyte spindle formation and chromosome segregation. We show that depending on the oocyte maturation state, CENP-V localizes to centromeres, to microtubule organizing centers, and to spindle microtubules.

View Article and Find Full Text PDF

Seeing physiological processes at the nanoscale in living organisms without labeling is an ultimate goal in life sciences. Using X-ray ptychography, we explored in situ the dynamics of unstained, living fission yeast Schizosaccharomyces pombe cells in natural, aqueous environment at the nanoscale. In contrast to previous X-ray imaging studies on biological matter, in this work the eukaryotic cells were alive even after several ptychographic X-ray scans, which allowed us to visualize the chromatin motion as well as the autophagic cell death induced by the ionizing radiation.

View Article and Find Full Text PDF

Pairing of homologous chromosomes is a crucial step in meiosis, which in fission yeast depends on nuclear oscillations. However, how nuclear oscillations help pairing is unknown. Here, we show that homologous loci typically pair when the spindle pole body is at the cell pole and the nucleus is elongated, whereas they unpair when the spindle pole body is in the cell center and the nucleus is round.

View Article and Find Full Text PDF

During recombination, the DNA of parents exchange their genetic information to give rise to a genetically unique offspring. For recombination to occur, homologous chromosomes need to find each other and align with high precision. Fission yeast solves this problem by folding chromosomes in loops and pulling them through the viscous nucleoplasm.

View Article and Find Full Text PDF

During cell division, spindle microtubules attach to chromosomes through kinetochores, protein complexes on the chromosome. The central question is how microtubules find kinetochores. According to the pioneering idea termed search-and-capture, numerous microtubules grow from a centrosome in all directions and by chance capture kinetochores.

View Article and Find Full Text PDF

The establishment of neural circuits depends on the ability of axonal growth cones to sense their surrounding environment en route to their target. To achieve this, a coordinated rearrangement of cytoskeleton in response to extracellular cues is essential. Although previous studies have identified different chemotropic and adhesion molecules that influence axonal development, the molecular mechanism by which these signals control the cytoskeleton remains poorly understood.

View Article and Find Full Text PDF

During the formation of neural circuitry, axons are known to be guided to their specific targets by a relatively small arsenal of guidance signals. However, the molecular integration of this guidance information inside the axonal growth cone (GC) is still baffling. Focal adhesion kinase (FAK) is a cytosolic kinase which interacts with a complex molecular network via multiple phosphorylation sites.

View Article and Find Full Text PDF

Axon refinement is a necessary event for sculpting the final wiring of neural circuits. Although some factors have been identified that cause axonal arbor remodeling, the molecular pathways transducing these extracellular signals to adhesion disassembly and the cytoskeleton are poorly understood. Here we show that conditional ablation of Focal adhesion kinase (Fak) abolishes axon remodeling induced by Semaphorin-3A (Sema3A) in hippocampal neurons.

View Article and Find Full Text PDF

The capacity of the fungus Trichoderma harzianum CECT 2413 to colonize roots and stimulate plant growth was analyzed. Tobacco seedlings (Nicotiana benthamiana) transferred to Petri dishes inoculated with T. harzianum conidia showed increased plant fresh weight (140%) and foliar area (300%), as well as the proliferation of secondary roots (300%) and true leaves (140%).

View Article and Find Full Text PDF