We investigated calcium-binding motifs of peptides and their recognition of active functionalities for coordination. This investigation generates the fundamentals to design carrier material for calcium-bound peptide-peptide interactions. Interactions of different peptides with active calcium domains were investigated.
View Article and Find Full Text PDFHere we describe a new method to identify calcium-binding sites in proteins using high-resolution liquid chromatography-mass spectrometry in concert with calcium-directed collision-induced dissociations. Our method does not require any modifications to the liquid chromatography-mass spectrometry apparatus, uses standard digestion protocols, and can be applied to existing high-resolution MS data files. In contrast to NMR, our method is applicable to very small amounts of complex protein mixtures (femtomole level).
View Article and Find Full Text PDFThe separation of intact proteins, including protein isoforms arising from various amino-acid modifications, employing a poly(styrene-co-divinylbenzene) monolithic capillary column in high-performance liquid chromatography coupled on-line to a time-of-flight mass spectrometer (MS) is described. Using a 250 mm × 0.2 mm monolithic capillary column high-sensitivity separations yielding peak capacities of >600 were achieved with a 2h linear gradient and formic acid added in the mobile phase as ion-pairing agent.
View Article and Find Full Text PDFThe kinetic-plot approach, in which experimental t(0) and N-values are extrapolated to the performance at maximum system pressure by increasing the column length, was validated by coupling 250×3 mm columns packed with 3 μm particles. The extra-column volume introduced by coupling columns could be neglected with respect to the peak volumes. Plate numbers of up to 132,000 were experimentally achieved by coupling four columns.
View Article and Find Full Text PDFAnal Chem
August 2010
The peak-production rate (peak capacity per unit time) in comprehensive off-line two-dimensional liquid chromatography (LC/x/LC) was optimized for the separation of peptides using poly(styrene-co-divinylbenzene) monolithic columns in the reversed-phase (RP) mode. A first-dimension ((1)D) separation was performed on a monolithic column operating at a pH of 8, followed by sequential analysis of all the (1)D fractions on a monolithic column operating at a pH of 2. To obtain the highest peak-production rate, effects of column length, gradient duration, and sampling time were examined.
View Article and Find Full Text PDFIn this study, high-efficiency LC-MS/MS separations of complex proteolytic digests are demonstrated using 50 mm, 250 mm, and 1m long poly(styrene-co-divinylbenzene) monolithic capillary columns. The chromatographic performance of the 50 and 250 mm monoliths was compared at the same gradient steepness for gradient durations between 5 and 150 min. The maximum peak capacity of 400 obtained with a 50mm column, increased to 485 when using the 250 mm long column and scaling the gradient duration according column length.
View Article and Find Full Text PDFAn experimental study was performed to investigate the effects of column parameters and gradient conditions on the separation of intact proteins using styrene-based monolithic columns. The effect of flow rate on peak width was investigated at constant gradient steepness by normalizing the gradient time for the column hold-up time. When operating the column at a temperature of 60 degrees C a small C-term effect was observed in a flow rate range of 1-4 microL/min.
View Article and Find Full Text PDFA new hardware solution is proposed that allows one to automatically change the length of a chromatographic bed. The setup is based on the serial coupling of chromatographic columns using two rotor-stator valves (with N positions, N + 1 ports). Despite the use of a prototype setup requiring rather long connection tubing, only 9% loss in efficiency is observed for compounds with a retention factor above 4 compared to the efficiency expected on the basis of the individual column results.
View Article and Find Full Text PDFThe LC performance of a 1x50 mm polymer monolithic column format was demonstrated with high-peak capacity one- (1D) and offline two dimensional (2D) LC separations of intact proteins. After optimizing the RP 1D-LC conditions, including column temperature, flow rate and gradient time, a peak capacity of 475 was achieved within a 2-h analysis. The suitability of the monolithic column was also demonstrated for fast 1 min protein separations yielding 1 s peak widths determined at half peak height.
View Article and Find Full Text PDFTo obtain the best compromise between peak capacity and analysis time in one-dimensional and two-dimensional (2D) liquid chromatography (LC), column technology and operating conditions were optimized. The effects of gradient time, flow rate, column temperature, and column length were investigated in one-dimensional reversed-phase (RP) gradient nano-LC, with the aim of maximizing the peak per unit time for peptide separations. An off-line two-dimensional LC approach was developed using a micro-fractionation option of the autosampler, which allowed automatic fractionation of peptides after a first-dimension ion-exchange separation and re-injection of the fractions onto a second-dimension RP nano-LC column.
View Article and Find Full Text PDF