Pathogenic bacteria can affect a variety of economically relevant crops causing losses in productivity, limiting commercialization and requiring phytosanitary measures. These plant pathogens exhibit high level of host and tissue specificity through multiple molecular strategies including several secretion systems, effector proteins, and a broad repertoire of carbohydrate-active enzymes (CAZymes). Many of these CAZymes act on the plant cell wall and storage carbohydrates, such as cellulose and starch, releasing products used as nutrients and modulators of transcriptional responses to support host colonization by mechanisms yet poorly understood.
View Article and Find Full Text PDFCarbohydrate-binding modules (CBMs) constitute independently folded domains typically associated with carbohydrate-active enzymes (CAZymes). These modules are considered to have a rigid structure without notable conformational changes upon ligand binding, exhibiting a complementary topography in relation to the target carbohydrate. Herein, the high-resolution SAD-solved structure of a CBM from family 3 (BsCBM3) that binds to crystalline cellulose is reported in two crystalline forms.
View Article and Find Full Text PDFBioresour Technol
November 2022
Despite decades of research and industrial applications of Trichoderma reesei, the development of industrially relevant strains for enzyme production including a low-cost and scalable bioprocess remains elusive. Herein, bioprocess optimization, pilot plant scale-up, techno-economic analysis and life-cycle assessment for enzyme production by an engineered T. reesei strain are reported.
View Article and Find Full Text PDFLytic polysaccharide monooxygenases (LPMOs) are oxidative enzymes found in viruses, archaea, and bacteria as well as eukaryotes, such as fungi, algae and insects, actively contributing to the degradation of different polysaccharides. In Aspergillus nidulans, LPMOs from family AA9 (LPMO9s), along with an AA3 cellobiose dehydrogenase (CDH1), are cosecreted upon growth on crystalline cellulose and lignocellulosic substrates, indicating their role in the degradation of plant cell wall components. Functional analysis revealed that three target LPMO9s (LPMO9C, LPMO9F and LPMO9G) correspond to cellulose-active enzymes with distinct regioselectivity and activity on cellulose with different proportions of crystalline and amorphous regions.
View Article and Find Full Text PDFBackground: Leishmaniasis is a neglected tropical disease caused by the parasite Leishmania braziliensis, commonly found in Brazil and associated with cutaneous and visceral forms of this disease. Like other organisms, L. braziliensis has an enzyme called glutamine synthetase (LbGS) that acts on the synthesis of glutamine from glutamate.
View Article and Find Full Text PDFInt J Biol Macromol
January 2021
Cold-adapted endo-β-1,4-glucanases hold great potential for industrial processes requiring high activity at mild temperatures such as in food processing and extraction of bioactive compounds from plants. Here, we identified and explored the specificity, mode of action, kinetic behavior, molecular structure and biotechnological application of a novel endo-β-1,4-glucanase (XacCel8) from the phytopathogen Xanthomonas citri subsp. citri.
View Article and Find Full Text PDFSulfenic acids are the primary product of thiol oxidation by hydrogen peroxide and other oxidants. Several aspects of sulfenic acid formation through thiol oxidation were established recently. In contrast, the reduction of sulfenic acids is still scarcely investigated.
View Article and Find Full Text PDFThe glycoside hydrolase family 39 (GH39) is a functionally expanding family with limited understanding about the molecular basis for substrate specificity and extremophilicity. In this work, we demonstrate the key role of the positive-subsite region in modulating substrate affinity and how the lack of a C-terminal extension impacts on oligomerization and structural stability of some GH39 members. The crystallographic and SAXS structures of a new GH39 member from the phytopathogen support the importance of an extended C-terminal to promote oligomerization as a molecular strategy to enhance thermal stability.
View Article and Find Full Text PDFBackground: The path for the development of hypersecreting strains of capable of producing industrially relevant enzyme titers remains elusive despite over 70 years of research and industrial utilization. Herein, we describe the rational engineering of the publicly available RUT-C30 strain and a customized process for cellulase production based on agroindustrial by-products.
Results: A CRISPR/Cas9 system was used to introduce six genetic modifications in RUT-C30.
β-Mannanases from the glycoside hydrolase 26 (GH26) family are retaining hydrolases that are active on complex heteromannans and whose genes are abundant in rumen metagenomes and metatranscriptomes. These enzymes can exhibit distinct modes of substrate recognition and are often fused to carbohydrate-binding modules (CBMs), resulting in a molecular puzzle of mechanisms governing substrate preference and mode of action that has not yet been pieced together. In this study, we recovered a novel GH26 enzyme with a CBM35 module linked to its N terminus (CrMan26) from a cattle rumen metatranscriptome.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
May 2020
Background: Enzymatic isomerization is a promising strategy to solve the problem of xylose fermentation and, consequently, to leverage the production of advanced biofuels and biochemicals. In a previous work, our research group discovered a new strain of Streptomyces with great biotechnological potential due to its ability to produce a broad arsenal of enzymes related to lignocellulose degradation.
Methods: We applied a multidisciplinary approach involving enzyme kinetics, biophysical methods, small angle X-ray scattering and X-ray crystallography to investigate two novel xylose isomerases, XylA1F1 and XylA2F1, from this strain.
Background: Lytic polysaccharide monooxygenases (LPMOs) opened a new horizon for biomass deconstruction. They use a redox mechanism not yet fully understood and the range of substrates initially envisaged to be the crystalline polysaccharides is steadily expanding to non-crystalline ones.
Results: The enzyme LPMO10A from the actinomycete was cloned and overexpressed in cells in the functional form with native N-terminal.
l-Asparagine synthetase (AS) acts in asparagine formation and can be classified into two families: AS-A or AS-B. AS-A is mainly found in prokaryotes and can synthetize asparagine from ammonia. Distinct from other eukaryotes, Trypanosoma cruzi produces an AS-A.
View Article and Find Full Text PDFBifidobacteria represent one of the first colonizers of human gut microbiota, providing to this ecosystem better health and nutrition. To maintain a mutualistic relationship, they have enzymes to degrade and use complex carbohydrates non-digestible by their hosts. To succeed in the densely populated gut environment, they evolved molecular strategies that remain poorly understood.
View Article and Find Full Text PDFBiotechnol Bioeng
April 2019
Rational design is an important tool for sculpting functional and stability properties of proteins and its potential can be much magnified when combined with in vitro and natural evolutionary diversity. Herein, we report the structure-guided design of a xylose-releasing exo-β-1,4-xylanase from an inactive member of glycoside hydrolase family 43 (GH43). Structural analysis revealed a nonconserved substitution (Lys ) that results in the disruption of the hydrogen bond network that supports catalysis.
View Article and Find Full Text PDFEnzyme Microb Technol
January 2019
Lignocellulosic materials are abundant, renewable and are emerging as valuable substrates for many industrial applications such as the production of second-generation biofuels, green chemicals and pharmaceuticals. However, the recalcitrance and the complexity of cell wall polysaccharides require multiple enzymes for their complete conversion to oligo- and monosaccharides. The endoglucanases from GH45 family are a small and relatively poorly studied group of enzymes with potential industrial application.
View Article and Find Full Text PDFBiotechnol Biofuels
August 2018
Background: Arabinoxylan is an abundant polysaccharide in industrially relevant biomasses such as sugarcane, corn stover and grasses. However, the arabinofuranosyl di-substitutions that decorate the xylan backbone are recalcitrant to most known arabinofuranosidases (Abfs).
Results: In this work, we identified a novel GH51 Abf (Abf51) that forms trimers in solution and can cope efficiently with both mono- and di-substitutions at terminal or internal xylopyranosyl units of arabinoxylan.
The classical microbial strategy for depolymerization of β-mannan polysaccharides involves the synergistic action of at least two enzymes, endo-1,4-β-mannanases and β-mannosidases. In this work, we describe the first exo-β-mannanase from the GH2 family, isolated from pv. (XacMan2A), which can efficiently hydrolyze both manno-oligosaccharides and β-mannan into mannose.
View Article and Find Full Text PDFThe Amazon region holds most of the biological richness of Brazil. Despite their ecological and biotechnological importance, studies related to microorganisms from this region are limited. Metagenomics leads to exciting discoveries, mainly regarding non-cultivable microorganisms.
View Article and Find Full Text PDFDynamic high pressure (DHP) has been investigated as an innovative suitable method to induce protein modifications. This work evaluated the effect of DHP (up to three passes at 100, 150 and 200MPa, with an inlet temperature of 20°C) on functional and structural properties of bovine serum albumin (BSA). Results indicated that DHP process applied up to an energy limit of 100MPa increased the protein foaming capacity (FC) (p<0.
View Article and Find Full Text PDFMAF1 is the main RNA polymerase (Pol) III repressor that controls cell growth in eukaryotes. The Citrus ortholog, CsMAF1, was shown to restrict cell growth in citrus canker disease but its role in plant development and disease is still unclear. We solved the crystal structure of the globular core of CsMAF1, which reveals additional structural elements compared with the previously available structure of hMAF1, and explored the dynamics of its flexible regions not present in the structure.
View Article and Find Full Text PDF