Publications by authors named "Mario Tosi"

C1 inhibitor (C1Inh) deficiency is responsible for hereditary angioedema (C1-INH-HAE) and caused by variants of the SERPING1/C1INH/C1NH gene. C1Inh is the major control of kallikrein-kinin system. C1Inh deficiency leads to its uncontrolled activation, with subsequent generation of the vasoactive peptide bradykinin.

View Article and Find Full Text PDF

The identification of a causal mutation is essential for molecular diagnosis and clinical management of many genetic disorders. However, even if next-generation exome sequencing has greatly improved the detection of nucleotide changes, the biological interpretation of most exonic variants remains challenging. Moreover, particular attention is typically given to protein-coding changes often neglecting the potential impact of exonic variants on RNA splicing.

View Article and Find Full Text PDF
Article Synopsis
  • Constitutional mismatch repair-deficiency is caused by mutations in MMR genes, leading to a variety of childhood tumors, including leukemias and gastrointestinal cancers.
  • Two families are highlighted showcasing the varying clinical outcomes of these mutations; one family had siblings with multiple malignancies due to complex PMS2 deletions, while the other had an index case with Lynch syndrome-related tumors associated with less impactful MSH6 mutations.
  • The findings emphasize that the severity and type of tumors in patients with biallelic MMR mutations can differ based on the specific mutations present, suggesting the need to evaluate all MMR mutations in early-onset cancer cases.
View Article and Find Full Text PDF

Exonic variants can alter pre-mRNA splicing either by changing splice sites or by modifying splicing regulatory elements. Often these effects are difficult to predict and are only detected by performing RNA analyses. Here, we analyzed, in a minigene assay, 26 variants identified in the exon 7 of BRCA2, a cancer predisposition gene.

View Article and Find Full Text PDF

L1 syndrome results from mutations in the L1CAM gene located at Xq28. It encompasses a wide spectrum of diseases, X-linked hydrocephalus being the most severe phenotype detected in utero, and whose pathophysiology is incompletely understood. The aim of this study was to report detailed neuropathological data from patients with mutations, to delineate the neuropathological criteria required for L1CAM gene screening in foetuses by characterizing the sensitivity, specificity and positive predictive value of the cardinal signs, and to discuss the main differential diagnoses in non-mutated foetuses in order to delineate closely related conditions without L1CAM mutations.

View Article and Find Full Text PDF

Background: Prognosis of KRAS wild-type and mutant metastatic colorectal cancer (MCRC) patients (pts) treated with bevacizumab (BEV)-containing chemotherapy is not significantly different. Since specific KRAS mutations confer different aggressive behaviors, the prognostic role of prevalent KRAS mutations was retrospectively evaluated in MCRC pts treated with first line FIr-B/FOx, associating BEV to triplet chemotherapy.

Methods: Tumor samples were screened for KRAS codon 12, 13 and BRAF V600E mutations by SNaPshot and/or direct sequencing.

View Article and Find Full Text PDF

Background: Bevacizumab (BEV) plus triplet chemotherapy can increase efficacy of first-line treatment of metastatic colorectal cancer (MCRC), particularly integrated with secondary liver surgery in liver-limited (L-L) patients. The prognostic value of the KRAS genotype in L-L and other or multiple metastatic (O/MM) MCRC patients treated with the FIr-B/FOx regimen was retrospectively evaluated.

Methods: Tumoral and metastatic samples were screened for KRAS codon 12 and 13 and BRAF mutations by SNaPshot and/or direct sequencing.

View Article and Find Full Text PDF

Several genes expressed at the centrosome or spindle pole have been reported to underlie autosomal recessive primary microcephaly (MCPH), a neurodevelopmental disorder consisting of an important brain size reduction present since birth, associated with mild-to-moderate mental handicap and no other neurological feature nor associated malformation. Here, we report a mutation of CASC5 (aka Blinkin, or KNL1, or hSPC105) in MCPH patients from three consanguineous families, in one of which we initially reported the MCPH4 locus. The combined logarithm of odds score of the three families was >6.

View Article and Find Full Text PDF

Background: Exonic variants of unknown biological significance (VUS) identified in patients can affect mRNA splicing, either by changing 5' or 3' splice sites or by modifying splicing regulatory elements. Bioinformatic predictions of these elements are still inaccurate and only few such elements have been functionally mapped in BRCA2. We studied the effect on splicing of eight exon 7 VUS, selected from the French UMD-BRCA2 mutation database.

View Article and Find Full Text PDF

Assessing the impact of variants of unknown significance (VUS) on splicing is a key issue in molecular diagnosis. This impact can be predicted by in silico tools, but proper evaluation and user guidelines are lacking. To fill this gap, we embarked upon the largest BRCA1 and BRCA2 splice study to date by testing 272 VUSs (327 analyses) within the BRCA splice network of Unicancer.

View Article and Find Full Text PDF

A large fraction of sequence variants of unknown significance (VUS) of the breast and ovarian cancer susceptibility genes BRCA1 and BRCA2 may induce splicing defects. We analyzed 53 VUSs of BRCA1 or BRCA2, detected in consecutive molecular screenings, by using five splicing prediction programs, and we classified them into two groups according to the strength of the predictions. In parallel, we tested them by using functional splicing assays.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder resulting, in most cases, from homozygous deletions of the SMN1 gene or, in rare cases, from SMN1 intragenic mutations. Here we describe the identification and characterization of c.835-3C>T, a novel SMA-causing mutation detected in the intron 6 of the single SMN1 allele of a type IV SMA patient.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers used a high-resolution method called array-comparative genomic hybridization to detect copy number variations in the human genome.
  • They confirmed these variations with a new semiquantitative multiplex PCR assay on the Bio-Rad Experion system, which uses unlabeled DNA fragments.
  • The assay showed excellent repeatability and reproducibility, making it a reliable method for confirming genomic rearrangements detected by the initial screening method.
View Article and Find Full Text PDF

The interpretation of the numerous sequence variants of unknown biological and clinical significance (UV for "unclassified variant") found in genetic screenings represents a major challenge in the molecular diagnosis of genetic disease, including cancer susceptibility. A fraction of UVs may be deleterious because they affect mRNA splicing. Here, we describe a functional splicing assay based on a minigene construct that assesses the impact of sequence variants on splicing.

View Article and Find Full Text PDF

BACKGROUND A large fraction of the sequence variants of unknown significance or unclassified variants (UVs) could be pathogenic by affecting mRNA splicing. The breast and ovarian cancer susceptibility gene BRCA1 exhibits a large spectrum of sequence variation but only two variants, both located in exon 18, have been shown experimentally to affect splicing regulatory elements. The present study investigated the impact on splicing of the variant BRCA1 c.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is a common neuromuscular disorder caused by homozygous inactivation of the SMN1 (Survival Motor Neuron 1) gene. The disease severity is mainly influenced by the copy number of SMN2, a nearly identical gene from which only low amounts of full-length mRNA are produced. This correlation is not absolute, suggesting the existence of yet unknown factors modulating disease progression.

View Article and Find Full Text PDF

Colorectal cancers with microsatellite instability are characterized by an important density of tumor-infiltrating lymphocytes and a good prognosis. Microsatellite instability results from the inactivation of the DNA mismatch repair system and induces secondary somatic frameshift mutations within target genes harboring repeat sequences in their coding frame. By disrupting the open reading frame, frameshift mutations can result in the appearance of potentially immunogenic neopeptides.

View Article and Find Full Text PDF

Oral-facial-digital type I syndrome (OFDI) is characterised by an X-linked dominant mode of inheritance with lethality in males. Clinical features include facial dysmorphism with oral, dental and distal abnormalities, polycystic kidney disease and central nervous system malformations. Considerable allelic heterogeneity has been reported within the OFD1 gene, but DNA bi-directional sequencing of the exons and intron-exon boundaries of the OFD1 gene remains negative in more than 20% of cases.

View Article and Find Full Text PDF

Numerous unclassified variants (UVs) have been found in the mismatch repair genes MLH1 and MSH2 involved in hereditary nonpolyposis colorectal cancer (HNPCC or Lynch syndrome). Some of these variants may have an effect on pre-mRNA splicing, either by altering degenerate positions of splice site sequences or by affecting intronic or exonic splicing regulatory sequences such as exonic splicing enhancers (ESEs). In order to determine the consequences of UVs on splicing, we used a functional assay of exon inclusion.

View Article and Find Full Text PDF

Background: Genomic gains and losses play a crucial role in the development of diffuse large B-cell lymphomas. High resolution array comparative genomic hybridization provides a comprehensive view of these genomic imbalances but is not routinely applicable. We developed a polymerase chain reaction assay to provide information regarding gains or losses of relevant genes and prognosis in diffuse large B-cell lymphomas.

View Article and Find Full Text PDF

Different therapeutic strategies are currently evaluated in spinal muscular atrophy (SMA) that are aimed at increasing full-length (FL) mRNA levels produced from the SMN2 gene. Assays measuring SMN mRNA levels are needed. We have developed a sensitive, comparative assay based on multiplex fluorescent reverse-transcription polymerase chain reaction (RT-PCR) that can measure, in the same reaction, the levels of SMN mRNA with and without exon 7 sequences as well as those of total SMN mRNA.

View Article and Find Full Text PDF

We describe the biological consequences on PSEN1 exons 8 or 9 splicing and Abeta peptides production of four PSEN1 mutations associated with a phenotypic variant of Alzheimer disease, which includes cotton wool plaques and spastic paraparesis (CWP/SP). Two of these mutations (c.869-22_869-23ins18 and c.

View Article and Find Full Text PDF
Article Synopsis
  • The study discusses the development of a new assay, QMPSF, for detecting genomic microdeletions and microduplications, particularly in patients with mental retardation and associated features.
  • Researchers screened 293 patients with mental retardation, identifying specific genetic deletions, including a notable 5q35 deletion linked to Sotos syndrome and a 22q11 deletion associated with obesity and facial dysmorphism.
  • The QMPSF assay has the potential to expand to include more genetic loci, improving the detection of microduplication/microdeletion syndromes and assisting in understanding their prevalence among individuals with idiopathic mental retardation.
View Article and Find Full Text PDF