Efforts to construct synthetic biological circuits with more complex functions have often been hindered by the idiosyncratic behavior, limited dynamic range and crosstalk of commonly utilized parts. Here, we employ de novo RNA design to develop two high-performance translational repressors with sensing and logic capabilities. These synthetic riboregulators, termed toehold repressors and three-way junction (3WJ) repressors, detect transcripts with nearly arbitrary sequences, repress gene expression by up to 300-fold and yield orthogonal sets of up to 15 devices.
View Article and Find Full Text PDFColocalization can strongly alter the kinetics and efficiency of chemical processes. For instance, in DNA-templated synthesis unfavorable reactions are sped up by placing reactants into close proximity onto a DNA scaffold. In biochemistry, clustering of enzymes has been demonstrated to enhance the reaction flux through some enzymatic cascades.
View Article and Find Full Text PDF