Differential Scanning Calorimetry (DSC) is a central technique in investigating drug - membrane interactions, a critical component of pharmaceutical research. DSC measures the heat difference between a sample of interest and a reference as a function of temperature or time, contributing essential knowledge on the thermally induced phase changes in lipid membranes and how these changes are affected by incorporating pharmacological substances. The manuscript discusses the use of phospholipid bilayers, which can form structures like unilamellar and multilamellar vesicles, providing a simplified yet representative membrane model to investigate the complex dynamics of how drugs interact with and penetrate cellular barriers.
View Article and Find Full Text PDFAlzheimer's disease remains largely unknown, and currently there is no complete cure for the disease. New synthetic approaches have been developed to create multi-target agents, such as RHE-HUP, a rhein-huprine hybrid which can modulate several biological targets that are relevant to the development of the disease. While RHE-HUP has shown in vitro and in vivo beneficial effects, the molecular mechanisms by which it exerts its protective effect on cell membranes have not been fully clarified.
View Article and Find Full Text PDFThe interactions and the protective effect of the carotenoid crocin (CRO) on human erythrocytes (RBC) and molecular models of its membrane were investigated. The latter consisted of bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), representative of phospholipid classes located in the outer and inner monolayers of the RBC membrane, respectively. X-ray diffraction, differential scanning calorimetry (DSC) and electronic paramagnetic resonance spectroscopy (EPR) showed that CRO produced structural perturbations in DMPC bilayers and in isolated unsealed human erythrocyte membranes.
View Article and Find Full Text PDFAβ(1-42) peptide is a neurotoxic agent strongly associated with the etiology of Alzheimer's disease (AD). Current treatments are still of very low effectiveness, and deaths from AD are increasing worldwide. Huprine-derived molecules have a high affinity towards the enzyme acetylcholinesterase (AChE), act as potent Aβ(1-42) peptide aggregation inhibitors, and improve the behavior of experimental animals.
View Article and Find Full Text PDFStaphylococcus aureus is one of the most pathogenic bacteria; infections with it are associated with significant morbidity and mortality in health care facilities. Antimicrobial peptides are a promising next generation antibiotic with great potential against bacterial infections. In this study, evidence is presented of the biological and biophysical properties of the novel synthetic peptide ΔM3.
View Article and Find Full Text PDFIn addition to their own antioxidants, human cells feed on external antioxidants, such as the phenolic compounds of fruits and vegetables, which work together to keep oxidative stress in check. , an edible species of chayote, has phenolic compounds with antioxidant activity and antineoplastic activity. A hybrid shows one thousand times greater antineoplastic activity than edible species, but its antioxidant and anti-inflammatory activities and the content of phenolic compounds are unknown.
View Article and Find Full Text PDFEpirubicin is a cytotoxic drug used in the treatment of different types of cancer and increasing evidence suggests that its target is cell membranes. In order to gain insight on its toxic effects, intact red blood cells (RBC), human erythrocyte membranes and molecular models were used. The latter consisted in bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), phospholipid classes found mainly in the outer and inner monolayers of the human erythrocyte membrane, respectively.
View Article and Find Full Text PDFThe inhibition of the enzyme acetylcholinesterase (AChE) is a frequently used therapeutic option to treat Alzheimer's disease (AD). By decreasing the levels of acetylcholine degradation in the synaptic space, some cognitive functions of patients suffering from this disease are significantly improved. Rivastigmine is one of the most widely used AChE inhibitors.
View Article and Find Full Text PDFDonepezil is used to treat symptomatically the Alzheimer's disease (AD). This drug is a specific inhibitor of the enzyme acetylcholinesterase (AChE), whose main physiological function is to hydrolyze the neurotransmitter acetylcholine. The main objective of this work was to study the effect of donepezil on human erythrocytes as AChE is present in its membrane.
View Article and Find Full Text PDFThe human red blood cell (RBC) membrane has significant elastic capabilities which can be described measuring typical membrane edge fluctuations and mechanical properties by optical techniques. The RBC elastic properties can be affected by changes in the surrounding media. In an attempt to elucidate the molecular mechanisms of the interaction of resveratrol with the red cell membrane and of its antioxidant capacity the changes in mechanical properties of the RBC membrane were analyzed.
View Article and Find Full Text PDFThe interaction and protective effect of caffeic acid (CA) on human erythrocytes (RBC) and molecular models of its membrane were studied. The latter consisted of bilayers built up of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), representative of phospholipid classes located in the outer and inner monolayers of the human erythrocyte membrane, respectively. X-ray diffraction and differential scanning calorimetry results indicated that CA induced structural and thermotropic perturbations in multilayers and vesicles of DMPC.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2019
The interactions and the protective effect of epigallocatechin gallate (EGCG) on human erythrocytes (RBC) and molecular models of its membrane were investigated. The latter consisted of bilayers built- up of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), representative of phospholipid classes located in the outer and inner monolayers of the human erythrocyte membrane, respectively. X-ray diffraction and differential scanning calorimetry experiments showed that EGCG induced significant structural and thermotropic perturbations in multilayers and vesicles of DMPC; however, these effects were not observed in DMPE.
View Article and Find Full Text PDFThis study was aimed at elucidating the molecular mechanisms of the interaction of the antitumor alkylphospholipid drug miltefosine with human erythrocytes (RBC) and molecular models of its membrane. The latter consisted of bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), representative of phospholipid classes located in the outer and inner monolayers of the human erythrocyte membrane, respectively. X-ray results showed that the drug interacted with DMPC multilayers; however, no effects on DMPE were detected.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2018
Labetalol is one of the most used drugs for the treatment of hypertension. This molecule is able to bind to both alpha-1 (α1) and beta (β) adrenergic receptors present in vascular smooth muscle among other tissues. It has been determined that human erythrocytes possess both alpha receptors and beta-adrenergic receptors expressed on their surface.
View Article and Find Full Text PDFMemantine is an NMDA receptor antagonist clinically used for the treatment of moderate to severe Alzheimer's disease. Currently, it is the only NMDA receptor antagonist drug marketed against this disease. Despite the large number of publications regarding its clinical and therapeutic use, studies related to its mechanism of action are still inconclusive.
View Article and Find Full Text PDFTwo cytotoxic copper(II) complexes with N-H and N-methylated benzimidazole-derived ligands (Cu-L and Cu-L; L=bis(2-methylbenzimidazolyl)(2-methylthioethyl)amine, L=bis(1-methyl-2-methylbenzimidazolyl)(2-methylthioethyl)amine) were synthesized and exposed to human erythrocytes and molecular models of its membrane. The latter were bilayers built-up of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), classes of lipids present in the external and internal moieties of the human red cell membrane, respectively. Scanning electron microscopy (SEM) of erythrocytes incubated with solutions of both Cu(II) complexes showed that they induced morphological changes to the normal cells to echinocytes, and hemolysis at higher concentrations.
View Article and Find Full Text PDFThe antioxidant and antihemolytic properties contained in the leaves of Buddleja globosa (B. globosa), also known as "Matico," were determined. Aqueous extracts of leaves were assayed in human erythrocytes and molecular models of its membrane.
View Article and Find Full Text PDFMemantine is a NMDA antagonist receptor clinically used for treating Alzheimer's disease. NMDA receptors are present in the human neurons and erythrocyte membranes. The aim of the present study was to investigate the effects of memantine on human erythrocytes.
View Article and Find Full Text PDFThimerosal (THI, ethyl-mercury thiosalicylate) is added to vaccines as a preservative; as a consequence, infants may have been exposed to bolus doses of Hg that collectively added up to nominally 200 µg Hg during the first 6 months of life. While several studies report an association between THI-containing vaccines and neurological disorders, other studies do not support the causal relation between THI and autism. With the purpose to understand the molecular mechanisms of the toxic effect of THI it was assayed on human red cells and in bilayers built-up of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), classes of phospholipids found in the outer and inner monolayers of the human erythrocyte membrane, respectively.
View Article and Find Full Text PDFGallic acid (GA) is a polyphenol present in many plants. This study was aimed to investigate the molecular interaction of GA with the human erythrocyte membrane and to determine its antioxidant capacity. The molecular interaction with the membrane of human red cells and the antioxidant property was assayed on both human red cells and molecular models of its membrane.
View Article and Find Full Text PDFNon-steroidal anti-inflammatory drugs (NSAIDs) represent an effective pain treatment option and therefore one of the most sold therapeutic agents worldwide. The study of the molecular interactions responsible for their physiological activity, but also for their side effects, is therefore important. This report presents data on the interaction of the most consumed NSAIDs (ibuprofen, naproxen and diclofenac) with one main phospholipid in eukaryotic cells, dimyristoylphosphatidylserine (DMPS).
View Article and Find Full Text PDFIn order to gain insight into the molecular mechanism of the antioxidant properties of Solanum crispum, aqueous extracts of its leaves were assayed on human erythrocytes and molecular models of its membrane. Phenolics and alkaloids were detected by HPLC-MS. Scanning electron and defocusing microscopy showed that S.
View Article and Find Full Text PDFTwo cytotoxic copper(II) complexes with N-H and N-methylated benzimidazole-derived ligands (Cu-L(2) and Cu-L(2Me)) were synthesized and made to interact with human erythrocytes and molecular models of their plasmatic membranes. The latter consisted in lipid bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), lipids of the types present in the outer and inner monolayers of the human erythrocyte membrane, respectively. Initial assessment of the interaction of the complexes with DMPC and DMPE consisted of X-ray diffraction studies, which showed preferential interactions with the former.
View Article and Find Full Text PDFAimed to better understand the molecular mechanisms of its interactions with cell membranes, human erythrocyte and molecular models of the red cell membrane were utilized. The latter consisted of bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), representative of phospholipid classes located in the outer and inner monolayers of the human erythrocyte membrane, respectively. The capacity of amantadine to perturb the bilayer structures of DMPC and DMPE was evaluated by X-ray diffraction, fluorescence spectroscopy and differential scanning calorimetry (DSC).
View Article and Find Full Text PDFDespite the extended use and well-documented information, there are insufficient reports concerning the effects of propranolol on the structure and functions of cell membranes, particularly those of human erythrocytes. Aimed to better understand the molecular mechanisms of its interactions with cell membranes, human erythrocyte and molecular models of the red cell membrane were utilized. The latter consisted of bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), representative of phospholipid classes located in the outer and inner monolayers of the human erythrocyte membrane, respectively.
View Article and Find Full Text PDF