Neuroblastoma (NB) is the most commonly diagnosed extracranial solid tumor in children, accounting for 15% of all childhood cancer deaths. Although the 5-year survival rate of patients with a high-risk disease has increased in recent decades, NB remains a challenge in pediatric oncology, and the identification of novel potential therapeutic targets and agents is an urgent clinical need. The RNA-binding protein LIN28B has been identified as an oncogene in NB and is associated with a poor prognosis.
View Article and Find Full Text PDFNatural α-glucosidase inhibitors from plant-based foods such as catechins offer an attractive strategy for their potential anti-diabetic effects. In this study, infusions of three different tea types (green, white, and oolong) were investigated for their total phenolic (TPC) and catechins (EGCG, ECG, EGC, and EC) content, and for their α-glucosidase inhibitory activities. We observed that the level of TPC in white tea was significantly higher compared to oolong and green tea, which suggests higher content of EGCG and ECG catechins in fresh young leaves.
View Article and Find Full Text PDFTwenty-five azole compounds (-) were synthesised using regioselective base-metal catalysed and microwave-assisted approaches, fully characterised by high-resolution mass spectrometry (HRMS), nuclear magnetic resonance (NMR), and infrared spectra (IR) analyses, and evaluated for anticancer, anti-tyrosinase, and anti-oxidant activities and . exhibited potent anticancer activity against cells of four skin cancer (SC) lines, with selectivity for melanoma (A375, SK-Mel-28) or non-melanoma (A431, SCC-12) SC cells over non-cancerous HaCaT-keratinocytes. Clonogenic, scratch-wound, and immunoblotting assay data were consistent with anti-proliferative results, expression profiling therewith implicating intrinsic and extrinsic apoptosis activation.
View Article and Find Full Text PDFRecently, a novel coronavirus, known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has raised global concerns, being the etiological agent of the current pandemic infectious coronavirus disease 2019 (COVID-19). Specific prophylactic treatments like vaccines, have been authorized for use by regulatory bodies in multiple countries, however there is an urgent need to identify new, safe, and targeted therapeutics as post-exposure therapy for COVID-19. Among a plethora of potential pharmacological targets, the angiotensin-converting enzyme 2 (ACE2) membrane receptor, which plays a crucial role in viral entry, is representing an attractive intervention opportunity for SARS-CoV-2 antiviral discovery process.
View Article and Find Full Text PDFThis article contains supplemental datasets of the recently published related research article by Roy et al., [1]. It provides in-depth data not included in the original co-submission on the biophysical, molecular docking, and biological characterization of newly synthesized flavonol-based analogs of fisetin, a natural dietary small molecule with anticancer and anti-inflammatory properties.
View Article and Find Full Text PDFDue to hurdles, including resistance, adverse effects, and poor bioavailability, among others linked with existing therapies, there is an urgent unmet need to devise new, safe, and more effective treatment modalities for skin cancers. Herein, a series of flavonol-based derivatives of fisetin, a plant-based flavonoid identified as an anti-tumorigenic agent targeting the mammalian targets of rapamycin (mTOR)-regulated pathways, were synthesized and fully characterized. New potential inhibitors of receptor tyrosine kinases (c-KITs), cyclin-dependent kinase-2 (CDK2), and mTOR, representing attractive therapeutic targets for melanoma and non-melanoma skin cancers (NMSCs) treatment, were identified using inverse-docking, in vitro kinase activity and various cell-based anticancer screening assays.
View Article and Find Full Text PDFPhotoaffinity labeling (PAL) is one of the upcoming and powerful tools in the field of molecular recognition. It includes the determination of dynamic parameters, such as the identification and localization of the target protein and the site of drug binding. In this study, a photoaffinity-labeled probe for full-length human immunodeficiency virus-1 integrase (HIV-1 IN) capture was designed and synthesized, following the structure of the FDA-approved drug Raltegravir.
View Article and Find Full Text PDFSeveral fatal bunyavirus infections lack specific treatment. Here, we show that diketo acids engage a panel of bunyavirus cap-snatching endonucleases, inhibit their catalytic activity and reduce viral replication of a taxonomic representative in vitro. Specifically, the non-salt form of L-742,001 and its derivatives exhibited EC values between 5.
View Article and Find Full Text PDFRedox modulators have been developed as an attractive approach to treat cancer. Herein, we report the synthesis, identification, and biological evaluation of a quinazolinedione reactive oxygen species (ROS) inducer, QD394, with significant cytotoxicity in pancreatic cancer cells. QD394 shows a transcriptomic profile remarkably similar to napabucasin, a cancer stemness inhibitor.
View Article and Find Full Text PDFACS Med Chem Lett
June 2020
Engineered nanoparticles (NPs) to specifically deliver payload therapeutics to target cells involved in pathophysiological processes seem to offer a powerful strategy to overcome intrinsic limitations of drugs. In this Viewpoint we disclose the synergistic potential between medicinal chemistry and nanomedicine to exploit the "targeting concept" in developing effective nanotherapeutics, as well as the challenges and limitations that should be considered in pursuing their clinical translation, especially toward precision medicine.
View Article and Find Full Text PDFGold nanoparticles (GNPs) have been proposed as carriers for drugs to improve their intrinsic therapeutic activities and to overcome pharmacokinetic problems. In this study, novel nanosystems constituted by a model β-diketo acid (DKA) grafted to the surface of GNPs were designed and synthesized following the "multivalent high-affinity" binding strategy. These first nanoscale DKA prototypes showed improved inhibition of HIV-1 integrase (HIV-1 IN) catalytic activities as compared with free DKA ligands.
View Article and Find Full Text PDFThe management of Human Immunodeficiency Virus type 1 (HIV-1) infection requires life-long treatment that is associated with chronic toxicity and possible selection of drug-resistant strains. A new opportunity for drug intervention is offered by antivirals that act as allosteric inhibitors targeting two viral functions (dual inhibitors). In this work, we investigated the effects of 5,6-dihydroxyindole-2-carboxylic acid (DHICA) derivatives on both HIV-1 Integrase (IN) and Reverse Transcriptase associated Ribonuclease H (RNase H) activities.
View Article and Find Full Text PDFPARP-1, a nuclear protein, is one of the key member of the DNA repair assembly and thereby emerged as an attractive target in anti-cancer drug discovery. PARP-1 plays a key role in terms of base excision repair, which is an important pathway for cell survival in breast cancer with BRCA1/BRCA2-mutation. In this scenario, the goal of this study was to identify novel prototypes of PARP-1 inhibitors for the development of antitumor therapeutics to treat breast cancer.
View Article and Find Full Text PDFGrowth factor receptor-binding protein 10 (GRB10) is a well-known adaptor protein and a recently identified substrate of the mammalian target of rapamycin (mTOR). Depletion of GRB10 increases insulin sensitivity and overexpression suppresses PI3K/Akt signaling. Because the major reason for the limited efficacy of PI3K/Akt-targeted therapies in prostate cancer (PCa) is loss of mTOR-regulated feedback suppression, it is therefore important to assess the functional importance and regulation of GRB10 under these conditions.
View Article and Find Full Text PDFThe anti-proliferative activity of dietary flavonoid fisetin has been validated in various cancer models. Establishing its precise mechanism of action has proved somewhat challenging given the multiplicity of its targets. We demonstrated that YB-1 promotes epithelial-to-mesenchymal transition and its inhibition suppressed tumor cell proliferation and invasion.
View Article and Find Full Text PDFAltering redox homeostasis provides distinctive therapeutic opportunities for the treatment of pancreatic cancer. Quinazolinediones (QDs) are novel redox modulators that we previously showed to induce potent growth inhibition in pancreatic ductal adenocarcinoma (PDAC) cell lines. Our lead optimization campaign yielded QD325 as the most potent redox modulator candidate inducing substantial reactive oxygen species (ROS) in PDAC cells.
View Article and Find Full Text PDFWe report the synthesis, biological evaluation, and structural study of a series of substituted heteroaryl-pyrazole carboxylic acid derivatives. These compounds have been developed as inhibitors of specific isoforms of carbonic anhydrase (CA), with potential as prototypes of a new class of chemotherapeutics. Both X-ray crystallography and computational modeling provide insights into the CA inhibition mechanism.
View Article and Find Full Text PDFEarlier we introduced the concept of 'nanochemoprevention' i.e. the use of nanotechnology to improve the outcome of cancer chemoprevention.
View Article and Find Full Text PDFChem Commun (Camb)
September 2016
In this paper we report the synthesis of a series of benzoxaborole derivatives, their inhibition properties against some carbonic anhydrases (CAs), recognized as important drug targets, and the characterization of the binding mode of these molecules to the CA active site. Our data provide the first experimental evidence that benzoxaboroles can be efficiently used as CA inhibitors.
View Article and Find Full Text PDFThe HIV-1 ribonuclease H (RNase H) function of the reverse transcriptase (RT) enzyme catalyzes the selective hydrolysis of the RNA strand of the RNA:DNA heteroduplex replication intermediate, and represents a suitable target for drug development. A particularly attractive approach is constituted by the interference with the RNase H metal-dependent catalytic activity, which resides in the active site located at the C-terminus p66 subunit of RT. Herein, we report results of an in-house screening campaign that allowed us to identify 4-[4-(aryl)-1H-1,2,3-triazol-1-yl]benzenesulfonamides, prepared by the "click chemistry" approach, as novel potential HIV-1 RNase H inhibitors.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
November 2016
The bioactive flavonoid fisetin (FS) is a diet-derived antioxidant that is being increasingly investigated for its health-promoting effects. Unfortunately, the poor physicochemical and pharmacokinetic properties affect and limit the clinical application. In this study, novel polymeric nanoparticles (NPs), based on Poly-(ε-caprolactone) (PCL) and PLGA-PEG-COOH, encapsulating FS were formulated as suitable oral controlled release systems.
View Article and Find Full Text PDFInfluenza virus PA endonuclease has recently emerged as an attractive target for the development of novel antiviral therapeutics. This is an enzyme with divalent metal ion(s) (Mg(2+) or Mn(2+)) in its catalytic site: chelation of these metal cofactors is an attractive strategy to inhibit enzymatic activity. Here we report the activity of a series of N-acylhydrazones in an enzymatic assay with PA-Nter endonuclease, as well as in cell-based influenza vRNP reconstitution and virus yield assays.
View Article and Find Full Text PDFAim: The treatment of psoriasis remains elusive, underscoring the need for identifying novel disease targets and mechanism-based therapeutic approaches. We recently reported that the PI3K/Akt/mTOR pathway that is frequently deregulated in many malignancies is also clinically relevant for psoriasis. We also provided rationale for developing delphinidin (Del), a dietary antioxidant for the management of psoriasis.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with poor prognosis and limited therapeutic options. Therefore, there is an urgent need to identify new, safe, and targeted therapeutics for effective treatment of late as well as early stage disease. Plectin-1 (Plec-1) was recently identified as specific biomarker for detecting PDAC at an early stage.
View Article and Find Full Text PDFCelastrol (CL), a triterpenoid extracted from the Chinese herb Tripterygium wilfordii, has recently attracted interest for its potential antitumor effects. However, unfavorable physicochemical and pharmacokinetics properties such as low solubility, poor bioavailability, and systemic toxicity, are limiting its therapeutic application. In this context, the development of innovative nanocarriers can be useful to overcome these issues, and nanoencapsulation would represent a powerful strategy.
View Article and Find Full Text PDF