Adipose tissue-derived stromal cells (ASCs) represent a capable source for cell-based therapeutic approaches. For monitoring a cell-based application in vivo, magnetic resonance imaging (MRI) of cells labeled with iron oxide particles is a common method. It is the aim of the present study to analyze potential DNA damage, cytotoxicity and impairment of functional properties of human (h)ASCs after labeling with citrate-coated very small superparamagnetic iron oxide particles (VSOPs).
View Article and Find Full Text PDFMagnetic nanoparticles (NPs), such as very small iron oxide NPs (VSOPs) can be used for targeted drug delivery, cancer treatment or tissue engineering. Another important field of application is the labelling of mesenchymal stem cells to allow in vivo tracking and visualization of transplanted cells using magnetic resonance imaging (MRI). For these NPs, however, various toxic effects, as well as functional impairment of the exposed cells, are described.
View Article and Find Full Text PDFZinc oxide nanoparticles (ZnO-NPs) are widely utilized, for example in manufacturing paints and in the cosmetic industry. In addition, there is raising interest in the application of NPs in stem cell research. However, cytotoxic, genotoxic and pro-inflammatory effects were shown for NPs.
View Article and Find Full Text PDFMoringa oleifera is reported to be a miracle plant, with positive effects on practically every system in the animal body. The methanolic extract of Moringa oleifera leaves was fractionated using liquid-liquid fractionation, column chromatography and preparative high-performance liquid chromatography (HPLC). Bioassay guided fractionation using Ferric Reducing Antioxidant Power (FRAP) was used to determine the fraction with the highest antioxidative power.
View Article and Find Full Text PDFBackground Aims: Adipose-derived stem cells (ASCs) are a promising mesenchymal cell source for tissue engineering approaches. To obtain an adequate cell amount, in vitro expansion of the cells may be required in some cases. To monitor potential contraindications for therapeutic applications in humans, DNA strand breaks and chromosomal aberrations in ASCs during in vitro expansion were examined.
View Article and Find Full Text PDFIntroduction: Chondrogenic differentiation of adipose-derived stem cells (ASCs) has proven to be feasible. To compensate for laryngeal palsy or cartilage defects after surgery or trauma using tissue engineering, a formable and stable scaffold material is mandatory.
Methods: ASCs were seeded in fibrin-polyurethane scaffolds and cultured in chondrogenic differentiation medium adding the growth factors TGF-b1, TGF-b3, and BMP-2 for up to 35 days.