Most described species have not been explicitly included in phylogenetic trees-a problem named the Darwinian shortfall-owing to a lack of molecular and/or morphological data, thus hampering the explicit incorporation of evolution into large-scale biodiversity analyses. We investigate potential drivers of the Darwinian shortfall in tetrapods, a group in which at least one-third of described species still lack phylogenetic data, thus necessitating the imputation of their evolutionary relationships in fully sampled phylogenies. We show that the number of preserved specimens in scientific collections is the main driver of phylogenetic knowledge accumulation, highlighting the major role of biological collections in unveiling novel biodiversity data and the importance of continued sampling efforts to reduce knowledge gaps.
View Article and Find Full Text PDFHuman-induced climate change has intensified negative impacts on socioeconomic factors, the environment, and biodiversity, including changes in rainfall patterns and an increase in global average temperatures. Drylands are particularly at risk, with projections suggesting they will become hotter, drier, and less suitable for a significant portion of their species, potentially leading to mammal defaunation. We use ecological niche modelling and community ecology biodiversity metrics to examine potential geographical range shifts of non-volant mammal species in the largest Neotropical dryland, the Caatinga, and evaluate impacts of climate change on mammal assemblages.
View Article and Find Full Text PDFMuseum specimens and citizen science initiatives are valuable sources of information on how anthropogenic activities affect biodiversity and how species respond to rapid global change. Although tropical regions harbor most of the planet's biodiversity, investigations on species' phenological changes are heavily biased toward temperate regions. Such unevenness in phenological research is also taxonomically biased, with reptiles being the least studied group among tetrapod species regarding animal phenology.
View Article and Find Full Text PDFBiodiversity loss is one of the main challenges of our time, and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space. While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes, vast areas of the tropics remain understudied. In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity, but it remains among the least known forests in America and is often underrepresented in biodiversity databases.
View Article and Find Full Text PDFStudying species interactions in nature often requires elaborated logistics and intense fieldwork. The difficulties in such task might hinder our ability to answer questions on how biotic interactions change with the environment. Fortunately, a workaround to this problem lies within scientific collections.
View Article and Find Full Text PDFPredator-prey interactions are important evolutionary drivers of defensive behaviors, but they are usually difficult to record. This lack of data on natural history and ecological interactions of species can be overcome through museum specimens, at least for some reptiles. When facing aggressive interactions, reptile species may exhibit the defensive behavior of autotomy by losing the tail, which is also known as "urotomy".
View Article and Find Full Text PDFUnlabelled: There is a growing recognition that spatial scale is important for understanding ecological processes shaping community membership, but empirical evidence on this topic is still scarce. Ecological processes such as environmental filtering can decrease functional differences among species and promote functional clustering of species assemblages, whereas interspecific competition can do the opposite. These different ecological processes are expected to take place at different spatial scales, with competition being more likely at finer scales and environmental filtering most likely at coarser scales.
View Article and Find Full Text PDFThe ongoing biodiversity crisis increases the importance and urgency of studies addressing the role of environmental variation on the composition and evolutionary history of species assemblages, but especially the tropics and ectotherms remain understudied. In regions with rainy summers, coexistence of tropical ectothermic species may be determined by the partitioning of the climatic niche, as ectotherms can rely on water availability and thermoregulatory behaviour to buffer constraints along their climatic niche. Conversely, tropical ectotherms facing dry summers would have fewer opportunities to climatic niche partitioning and other processes rather than environmental filtering would mediate species coexistence.
View Article and Find Full Text PDFEnvironmental gradients (EG) related to climate, topography and vegetation are among the most important drivers of broad scale patterns of species richness. However, these different EG do not necessarily drive species richness in similar ways, potentially presenting synergistic associations when driving species richness. Understanding the synergism among EG allows us to address key questions arising from the effects of global climate and land use changes on biodiversity.
View Article and Find Full Text PDFThe present study is a taxonomic revision of the genus Drymoluber Amaral, 1930, using meristic and morphometric characters, aspects of external hemipenial morphology and body coloration. Sexual dimorphism occurs in D. dichrous and D.
View Article and Find Full Text PDF