Over the past decade, myriads of studies have highlighted the central role of protein condensation in subcellular compartmentalization and spatiotemporal organization of biological processes. Conceptually, protein condensation stands at the highest level in protein structure hierarchy, accounting for the assembly of bodies ranging from thousands to billions of molecules and for densities ranging from dense liquids to solid materials. In size, protein condensates range from nanocondensates of hundreds of nanometers (mesoscopic clusters) to phase-separated micron-sized condensates.
View Article and Find Full Text PDFICA512/PTPRN is a receptor tyrosine-like phosphatase implicated in the biogenesis and turnover of the insulin secretory granules (SGs) in pancreatic islet beta cells. Previously we found biophysical evidence that its luminal RESP18 homology domain (RESP18HD) forms a biomolecular condensate and interacts with insulin in vitro at close-to-neutral pH, that is, in conditions resembling those present in the early secretory pathway. Here we provide further evidence for the relevance of these findings by showing that at pH 6.
View Article and Find Full Text PDFProtein conformation and cell compartmentalization are fundamental concepts and subjects of vast scientific endeavors. In the last two decades, we have witnessed exciting advances that unveiled the conjunction of these concepts. An avalanche of studies highlighted the central role of biomolecular condensates in membraneless subcellular compartmentalization that permits the spatiotemporal organization and regulation of myriads of simultaneous biochemical reactions and macromolecular interactions.
View Article and Find Full Text PDFIsolated or as a part of multidomain proteins, Sterol Carrier Protein 2 (SCP2) exhibits high affinity and broad specificity for different lipidic and hydrophobic compounds. A wealth of structural information on SCP2 domains in all forms of life is currently available; however, many aspects of its ligand binding activity are poorly understood. ylSCP2 is a well-characterized single domain SCP2 from the yeast Yarrowia lipolytica.
View Article and Find Full Text PDFBiochim Biophys Acta Proteins Proteom
March 2020
SEA domains are ubiquitous in large proteins associated with highly glycosylated environments. Certain SEA domains undergo intramolecular proteolysis involving a nucleophilic attack of a serine hydroxyl group on the preceding glycine carbonyl. The mucin-1 (MUC1) SEA domain has been extensively investigated as a model of intramolecular proteolysis.
View Article and Find Full Text PDFType 1 diabetes islet cell autoantigen 512 (ICA512/IA-2) is a tyrosine phosphatase-like intrinsic membrane protein involved in the biogenesis and turnover of insulin secretory granules (SGs) in pancreatic islet β-cells. Whereas its membrane-proximal and cytoplasmic domains have been functionally and structurally characterized, the role of the ICA512 N-terminal segment named "regulated endocrine-specific protein 18 homology domain" (RESP18HD), which encompasses residues 35-131, remains largely unknown. Here, we show that ICA512 RESP18HD residues 91-131 encode for an intrinsically disordered region (IDR), which acts as a condensing factor for the reversible aggregation of insulin and other β-cell proteins in a pH and Zn-regulated fashion.
View Article and Find Full Text PDF[Formula: see text]-Lactamases (penicillinases) facilitate bacterial resistance to antibiotics and are excellent theoretical and experimental models in protein structure, dynamics and evolution. Bacillus licheniformis exo-small penicillinase (ESP) is a Class A [Formula: see text]-lactamase with three tryptophan residues located one in each of its two domains and one in the interface between domains. The conformational landscape of three well-characterized ESP Trp[Formula: see text]Phe mutants was characterized in equilibrium unfolding experiments by measuring tryptophan fluorescence, far-UV CD, activity, hydrodynamic radius, and limited proteolysis.
View Article and Find Full Text PDFBiochim Biophys Acta Proteins Proteom
November 2018
Sterol carrier protein 2 (SCP2) binds lipids with high affinity and broad specificity. The overall hydrophobicity, fluidity, and dipolar dynamics of the binding site of SCP2 from Yarrowia lipolytica were characterized using the environmentally-sensitive fluorescent probe Laurdan. The study revealed a binding site with an overall polarity similar to that of dichloromethane and an internal phase comparable to that of phospholipid membranes with coexisting solid-ordered and liquid-crystalline states.
View Article and Find Full Text PDFA statistical analysis of circa 20,000 X-ray structures evidenced the effects of temperature of data collection on protein intramolecular distances and degree of compaction. Identical chains with data collected at cryogenic ultralow temperatures (≤160K) showed a radius of gyration (R) significantly smaller than at moderate temperatures (≥240K). Furthermore, the analysis revealed the existence of structures with a R significantly smaller than expected for cryogenic temperatures.
View Article and Find Full Text PDFSterol Carrier Protein 2 (SCP2) has been associated with lipid binding and transfer activities. However, genomic, proteomic, and structural studies revealed that it is an ubiquitous domain of complex proteins with a variety functions in all forms of life. High-resolution structures of representative SCP2 domains are available, encouraging a comprehensive review of the structural basis for its success.
View Article and Find Full Text PDFGhrelin is an octanoylated peptide hormone that plays a key role in the regulation of the body weight and glucose homeostasis. In plasma, ghrelin circulates bound to larger proteins whose identities are partially established. Here, we used size exclusion chromatography, mass spectrometry and isothermal titration microcalorimetry to show that ghrelin interacts with serum albumin.
View Article and Find Full Text PDFBackground: ICA512 (or IA-2/PTPRN) is a transmembrane protein-tyrosine phosphatase located in secretory granules of neuroendocrine cells. Previous studies implied its involvement in generation, cargo storage, traffic, exocytosis and recycling of insulin secretory granules, as well as in β-cell proliferation. While several ICA512 domains have been characterized, the function and structure of a large portion of its N-terminal extracellular (or lumenal) region are unknown.
View Article and Find Full Text PDFThe type 1 diabetes autoantigen ICA512/IA-2/RPTPN is a receptor protein tyrosine phosphatase of the insulin secretory granules (SGs) which regulates the size of granule stores, possibly via cleavage/signaling of its cytosolic tail. The role of its extracellular region remains unknown. Structural studies indicated that β2- or β4-strands in the mature ectodomain (ME ICA512) form dimers in vitro.
View Article and Find Full Text PDFSterol carrier protein 2 (SCP2), a small intracellular domain present in all forms of life, binds with high affinity a broad spectrum of lipids. Due to its involvement in the metabolism of long-chain fatty acids and cholesterol uptake, it has been the focus of intense research in mammals and insects; much less characterized are SCP2 from other eukaryotic cells and microorganisms. We report here the X-ray structure of Yarrowia lipolytica SCP2 (YLSCP2) at 2.
View Article and Find Full Text PDFβ2-syntrophin, a dystrophin-associated protein, plays a pivotal role in insulin secretion by pancreatic β-cells. It contains a PDZ domain (β2S-PDZ) that, in complex with protein-tyrosine phosphatase ICA512, anchors the dense insulin granules to actin filaments. The phosphorylation state of β2-syntrophin allosterically regulates the affinity of β2S-PDZ for ICA512, and the disruption of the complex triggers the mobilization of the insulin granule stores.
View Article and Find Full Text PDFβ-lactamases confer antibiotic resistance, one of the most serious world-wide health problems, and are an excellent theoretical and experimental model in the study of protein structure, dynamics and evolution. Bacillus licheniformis exo-small penicillinase (ESP) is a Class-A β-lactamase with three tryptophan residues located in the protein core. Here, we report the 1.
View Article and Find Full Text PDFICA512 (or IA-2) is a transmembrane protein-tyrosine phosphatase located in secretory granules of neuroendocrine cells. Initially, it was identified as one of the main antigens of autoimmune diabetes. Later, it was found that during insulin secretion, the cytoplasmic domain of ICA512 is cleaved and relocated to the nucleus, where it stimulates the transcription of the insulin gene.
View Article and Find Full Text PDFbeta-lactamases (penicillinases) are important complicating factors in bacterial infections and excellent theoretical and experimental models in protein structure, dynamics and evolution. Bacillus licheniformis exo-small penicillinase (ESP) is a Class A beta-lactamase with three tryptophan residues, one located in each of the two protein domains and one located in the interface between domains. To determine the tryptophan contribution to the ESP UV-absorption, circular dichroism, and steady-state and time-resolved fluorescence, four Trp-->Phe mutants were prepared and characterized.
View Article and Find Full Text PDFPseudomonas aeruginosa infections constitute a widespread health problem with high economical and social impact, and the phosphorylcholine phosphatase (PchP) of this bacterium is a potential target for antimicrobial treatment. However, drug design requires high-resolution structural information and detailed biophysical knowledge not available for PchP. An obstacle in the study of PchP is that current methods for its expression and purification are suboptimal and allowed only a preliminary kinetic characterization of the enzyme.
View Article and Find Full Text PDFSterol carrier protein 2 (SCP2) is an intracellular protein domain found in all forms of life. It was originally identified as a sterol transfer protein, but was recently shown to also bind phospholipids, fatty acids, and fatty-acyl-CoA with high affinity. Based on studies carried out in higher eukaryotes, it is believed that SCP2 targets its ligands to compartmentalized intracellular pools and participates in lipid traffic, signaling, and metabolism.
View Article and Find Full Text PDFWe report a biophysical characterisation of apo-sterol carrier protein-2 from Yarrowia lipolytica (YLSCP-2) and its urea-induced unfolding followed by intrinsic tryptophan fluorescence, far-UV CD, ANS binding, and small angle X-ray scattering (SAXS). The unfolding is described as a three-step process. The first steps, between 1 and 2 M urea, have well-defined cooperative character and are related to the break down of most of the tertiary and secondary structure.
View Article and Find Full Text PDFB. licheniformis exo-small beta-lactamase (ESBL) has a complex architecture with twelve alpha helices and a five-stranded beta sheet. We replaced, separately or simultaneously, three of the ESBL alpha helices with prototype amphiphatic helices from a catalog of secondary structure elements.
View Article and Find Full Text PDFThioredoxins (TRXs) are monomeric alpha/beta proteins with a fold characterized by a central twisted beta-sheet surrounded by alpha-helical elements. The interaction of the C-terminal alpha-helix 5 of TRX against the remainder of the protein involves a close packing of hydrophobic surfaces, offering the opportunity of studying a fine-tuned molecular recognition phenomenon with long-range consequences on the acquisition of tertiary structure. In this work, we focus on the significance of interactions involving residues L94, L99, E101, F102, L103 and L107 on the formation of the noncovalent complex between reduced TRX1-93 and TRX94-108.
View Article and Find Full Text PDF