In modern cosmology, scalar fields with screening mechanisms are often used as explanations for phenomena like dark energy or dark matter. Amongst a zoo of models, the environment dependent dilaton, screened by the Polyakov-Damour mechanism, is one of the least constrained ones. Using recently developed path integral tools for directly computing reduced density matrices, we study the open quantum dynamics of a probe, modelled by another real scalar field, induced by interactions with an environment comprising fluctuations of a dilaton.
View Article and Find Full Text PDFEur Phys J C Part Fields
October 2022
We consider the environment-dependent dilaton in the laboratory and the solar system and derive approximate analytical solutions to the field theory equations of motion in the presence of a one or two mirror system or a sphere. The solutions obtained herein can be applied to BOUNCE experiments, neutron interferometry and for the calculation of the dilaton field induced "Casimir force" in the Cannex experiment as well as for Lunar Laser Ranging. They are typical of the Damour-Polyakov screening mechanism whereby deviations from General Relativity are suppressed by a vanishingly small direct coupling of the dilaton to matter in dense environments.
View Article and Find Full Text PDF