Publications by authors named "Mario Patrizio"

Expression of the β-myosin heavy chain (β-MHC), a major component of the cardiac contractile apparatus, is tightly regulated as even modest increases can be detrimental to heart under stress. In healthy hearts, continuous inhibition of β-adrenergic tone upregulates β-MHC expression. However, it is unknown whether the duration of the β-adrenergic inhibition and β-MHC expression are related.

View Article and Find Full Text PDF

Cardiac dysfunction is often observed in patients with cancer also representing a serious problem limiting chemotherapeutic intervention and even patient survival. In view of the recently established role of the immune system in the control of cancer growth, the present work has been undertaken to investigate the effects of a panel of the most important inflammatory cytokines on the integrity and function of mitochondria, as well as of the cytoskeleton, two key elements in the functioning of cardiomyocytes. Either mitochondria features or actomyosin cytoskeleton organization of in vitro-cultured cardiomyocytes treated with different inflammatory cytokines were analyzed.

View Article and Find Full Text PDF

Although Hodgkin lymphoma (HL) is curable with current therapy, at least 20% of patients relapse or fail to make complete remission. In addition, patients who achieve long-term disease-free survival frequently undergo infertility, secondary malignancies, and cardiac failure, which are related to chemotherapeutic agents and radiation therapies. Hence, new therapeutic strategies able to counteract the HL disease in this important patient population are still a matter of study.

View Article and Find Full Text PDF

Cardiac remodeling is a complex process that occurs in response to different types of cardiac injury such as ischemia and hypertension, and that involves cardiomyocytes, fibroblasts, vascular smooth muscle cells, vascular endothelial cells, and inflammatory cells. The end result is cardiomyocyte hypertrophy, fibrosis, inflammation, vascular, and electrophysiological remodeling. This paper reviews a large number of studies on the influence of gender on pathological cardiac remodeling and shows how sex differences result in different clinical outcomes and therapeutic responses, with males which generally develop greater cardiac remodeling responses than females.

View Article and Find Full Text PDF

Background: Current evidence indicates that estrogens, in particular 17β-estradiol (E2), play a crucial role in the gender bias of autoimmune diseases although the underlying molecular mechanisms have not yet been fully elucidated. Immune cells have estrogen receptors (ERs), i.e.

View Article and Find Full Text PDF

Prostate cancer is among the most commonly diagnosed male diseases and a leading cause of cancer mortality in men. There is emerging evidence that autophagy plays an important role in malignant cell survival and offers protection from the anti-cancer drugs in prostate cancer cells. AMBRA1 and the autophagic protein sequestosome-1 (SQSTM1; p62) expression were evaluated by immunohistochemistry and western blot on tissue samples from both benign and malignant prostatic lesions.

View Article and Find Full Text PDF

In this study, we test the hypothesis that cAMP, acting as an extracellular mediator, affects the physiology and function of human myeloid cells. The cAMP is a second messenger recognized as a universal regulator of several cellular functions in different organisms. Many studies have shown that extracellular cAMP exerts regulatory functions, acting as first mediator in multiple tissues.

View Article and Find Full Text PDF

We investigated the influence of sex hormones on the expression of α- and β-cardiac myosin heavy chain isoforms (α-MHC and β-MHC) in C57bl/6 mice of both sexes under physiological and pathological conditions. In the left ventricles (LVs) of fertile female mice, β-MHC expression was tenfold higher compared with the age-matched males, whereas no difference was found in α-MHC expression. These differences disappeared after ovariectomy or in immature mice.

View Article and Find Full Text PDF

B lymphocytes play an important role in the immune response induced by mucosal adjuvants. In this study we investigated the in vitro antigen-presenting cell (APC) properties of human B cells upon treatment with cholera toxin (CT) and Escherichia coli heat-labile enterotoxin (LT) and nontoxic counterparts of these toxins, such as the B subunit of CT (CT-B) and the mutant of LT lacking ADP ribosyltransferase activity (LTK63). Furthermore, forskolin (FSK), a direct activator of adenylate cyclase, and cyclic AMP (cAMP) analogues were used to investigate the role of the increase in intracellular cAMP caused by the A subunit of CT and LT.

View Article and Find Full Text PDF

The treatment with beta-blockers causes an enhancement of the norepinephrine-induced fetal gene response in cultured cardiomyocytes. Here, we tested whether the activation of cAMP-mediated beta-adrenergic signaling antagonizes alpha(1)-adrenergic receptor (AR)-mediated fetal gene response. To address this question, the fetal gene program, of which atrial natriuretic peptide (ANP) and the beta-isoform of myosin heavy chain are classical members, was induced by phenylephrine (PE), an alpha(1)-AR agonist.

View Article and Find Full Text PDF

Recent research has revealed that propranolol, a beta-adrenoceptor antagonist, causes extracellular signal-regulated kinase (ERK) cascade activation, nuclear translocation of phospho-ERK and increased transcriptional activity in cultured cell lines. Given the importance of beta-adrenoceptor antagonists in the treatment of heart failure, we evaluated the capability of propranolol of promoting the ERK-dependent gene expression at the cardiomyocyte level. To this end, the gene expression of the early growth response factor 1 (Egr1), a well-recognized indicator of nuclear extracellular signal-regulated kinase 1/2 (ERK1/2) activation, was assessed by quantitative real-time RT-PCR in vivo as well as in vitro experiments.

View Article and Find Full Text PDF

We have previously shown that cholera toxin (CT) and other cAMP-elevating agents induce up-regulation of the inhibitory molecule CTLA-4 on human resting T lymphocytes. In this study, we evaluated the function of these cells. We found that purified human CD4(+) T lymphocytes pretreated with CT were able to inhibit proliferation of autologous PBMC in a dose-dependent manner.

View Article and Find Full Text PDF

Objective: Cardiac hypertrophy arises as an adaptive response to increased afterload. Studies in knockout mice have shown that catecholamines, but not alpha1-adrenergic receptors, are necessary for such an adaptation to occur. However, whether beta-adrenergic receptors are critical for the development of cardiac hypertrophy in response to pressure overload is not known at this time.

View Article and Find Full Text PDF

cAMP has been reported to exert a neuroprotective role in several in vivo and in vitro models of brain pathologies, mainly by regulating microglial activation and orienting these cells toward a neuroprotective phenotype. In order to elucidate the intracellular pathways regulated by tumor necrosis factor (TNF) in glial cells, I have studied the modulation of cAMP accumulation by TNF in microglia and astrocyte cultures obtained from the neonatal rat brain. Pre-treatment of microglia with TNF reduced in a dose- and time-dependent manner cAMP accumulation induced by forskolin (FSK), in the presence of the phosphodiesterase inhibitor 3-isobutyl-1-methyl-xanthine (IBMX).

View Article and Find Full Text PDF

The human immunodeficiency virus type-1 (HIV-1) regulatory protein Tat is produced in the early phase of infection and is essential for virus replication. Together with other viral products, Tat has been implicated in the pathogenesis of HIV-1-associated dementia (HAD). As HIV-1 infection in the brain is very limited and macrophage/microglial cells are the only cellular type productively infected by the virus, it has been proposed that many of the viral neurotoxic effects are mediated by microglial products.

View Article and Find Full Text PDF