Publications by authors named "Mario P S Chin"

Single-strand breaks (SSBs) represent the major form of DNA damage, yet techniques to map these lesions genome-wide with nucleotide-level precision are limited. Here, we present a method, termed SSiNGLe, and demonstrate its utility to explore the distribution and dynamic changes in genome-wide SSBs in response to different biological and environmental stimuli. We validate SSiNGLe using two very distinct sequencing techniques and apply it to derive global profiles of SSBs in different biological states.

View Article and Find Full Text PDF

Adeno-associated virus (AAV) vectors have emerged as a safe and efficient gene therapy platform. One complication is that a significant amount of empty particles have always been generated as impurities during AAV vector production. However, the effects of such particles on AAV vector performance remain unclear.

View Article and Find Full Text PDF

Recombinant adeno-associated viral (rAAV) vectors have recently achieved clinical successes in human gene therapy. However, the commonly observed, heavier particles found in rAAV preparations have traditionally been ignored due to their reported low in vitro transduction efficiency. In this study, the biological properties of regular and high-density rAAV serotype 8 vectors, rAAV and rAAV, were systemically compared.

View Article and Find Full Text PDF

Background: Severe genetic bottleneck occurs during HIV-1 sexual transmission whereby most infections are initiated by a single transmitted/founder (T/F) virus. Similar observations had been made in nonhuman primates exposed mucosally to SIV/SHIV. We previously reported variable clinical outcome in rhesus macaques inoculated intravaginally (ivg) with a high dose of R5 SHIVSF162P3N.

View Article and Find Full Text PDF

Background: HIV-1 subtype B and subtype F are prevalent in the AIDS epidemic of Brazil. Recombinations between these subtypes have generated at least four BF circulating recombinant forms (CRFs). CRF28_BF and CRF29_BF are among the first two BF recombinants being identified in Brazil and they contributed significantly to the epidemic.

View Article and Find Full Text PDF

Background: The viral genome of HIV-1 contains several secondary structures that are important for regulating viral replication. The stem-loop 1 (SL1) sequence in the 5' untranslated region directs HIV-1 genomic RNA dimerization and packaging into the virion. Without SL1, HIV-1 cannot replicate in human T cell lines.

View Article and Find Full Text PDF

High-frequency recombination is a hallmark of HIV-1 replication. Recombination can occur between two members of the same subtype or between viruses from two different subtypes, generating intra- or intersubtype recombinants, respectively. Many intersubtype recombinants have been shown to circulate in human populations.

View Article and Find Full Text PDF

The generation of genetic diversity is a fundamental characteristic of HIV-1 replication, allowing the virus to successfully evade the immune response and antiviral therapies. Although mutations are the first step towards diversity, mixing of the mutations through the process of recombination increases the variation and allows for the faster establishment of advantageous strains within the viral population. Therefore, studying recombination of HIV-1 provides insights into not only the mechanisms of HIV-1 replication but also into the potential for spread of antiviral drug resistance mutations within and across viral subtypes.

View Article and Find Full Text PDF

HIV-1 intersubtype recombinants have an increasingly important role in shaping the AIDS pandemic. We sought to understand the molecular mechanisms that generate intersubtype HIV-1 recombinants. We analyzed recombinants of HIV-1 subtypes B and C, and identified their crossover junctions in the viral genome from the 5' long terminal repeat (LTR) to the end of pol.

View Article and Find Full Text PDF

Sequence differences in the dimerization initiation signal (DIS) affect the rate of recombination between subtype B and subtype C HIV-1. To test the hypothesis that DIS sequences can be used to predict intersubtype recombination potentials, we measured the recombination rate between CRF01_A/E (AE) and B, which contain mismatches in the DIS, and between AE and C, which have an identical DIS. Compared with the intrasubtype recombination rate, the recombination rate between AE and subtype B virus was 9-fold lower, and the rate between AE and subtype C virus was 2-fold lower.

View Article and Find Full Text PDF

Genetic recombination increases diversity in HIV-1 populations, thereby allowing variants to escape from host immunity or antiviral therapies. In addition to the currently described nine subtypes of HIV-1, many of the circulating strains are intersubtype recombinants. In this study, we determined the recombination rate between two HIV-1 subtype C viruses and between a subtype B virus and a subtype C virus during a single round of virus replication.

View Article and Find Full Text PDF