Innate lymphoid cells (ILCs) govern immune cell homeostasis in the intestine and protect the host against microbial pathogens. Various cell-intrinsic pathways have been identified that determine ILC development and differentiation. However, the cellular components that regulate ILC sustenance and function in the intestinal lamina propria are less known.
View Article and Find Full Text PDFFibroblastic reticular cells (FRCs) are a crucial part of the stromal cell infrastructure of secondary lymphoid organs (SLOs). Lymphoid organ fibroblasts form specialized niches for immune cell interactions and thereby govern lymphocyte activation and differentiation. Moreover, FRCs produce and ensheath a network of extracellular matrix (ECM) microfibers called the conduit system.
View Article and Find Full Text PDFFibroblastic reticular cells (FRCs) are stromal cells that actively promote the induction of immune responses by coordinating the interaction of innate and adaptive immune cells. However, whether and to which extent immune cell activation is determined by lymph node FRC reprogramming during acute viral infection has remained unexplored. Here, we genetically ablated expression of the type I interferon-α receptor () in Ccl19-Cre cells and found that sensing of type I interferon imprints an antiviral state in FRCs and thereby preserves myeloid cell composition in lymph nodes of naive mice.
View Article and Find Full Text PDFThrough the formation of concentration gradients, morphogens drive graded responses to extracellular signals, thereby fine-tuning cell behaviors in complex tissues. Here we show that the chemokine CXCL13 forms both soluble and immobilized gradients. Specifically, CXCL13 follicular reticular cells form a small-world network of guidance structures, with computer simulations and optimization analysis predicting that immobilized gradients created by this network promote B cell trafficking.
View Article and Find Full Text PDFEfficient generation of germinal center (GC) responses requires directed movement of B cells between distinct microenvironments underpinned by specialized B cell-interacting reticular cells (BRCs). How BRCs are reprogrammed to cater to the developing GC remains unclear, and studying this process is largely hindered by incomplete resolution of the cellular composition of the B cell follicle. Here we used genetic targeting of Cxcl13-expressing cells to define the molecular identity of the BRC landscape.
View Article and Find Full Text PDFFibroblastic reticular cells (FRCs) form a road-like cellular network in lymph nodes (LNs) that provides essential chemotactic, survival, and regulatory signals for immune cells. While the topological characteristics of the FRC network have been elaborated, the network properties of the micro-tubular conduit system generated by FRCs, which drains lymph fluid through a pipeline-like system to distribute small molecules and antigens, has remained unexplored. Here, we quantify the crucial 3D morphometric parameters and determine the topological properties governing the structural organization of the intertwined networks.
View Article and Find Full Text PDFMyocarditis can develop into inflammatory cardiomyopathy through chronic stimulation of myosin heavy chain 6-specific T helper (T)1 and T17 cells. However, mechanisms governing the cardiotoxicity programming of heart-specific T cells have remained elusive. Using a mouse model of spontaneous autoimmune myocarditis, we show that progression of myocarditis to lethal heart disease depends on cardiac myosin-specific T17 cells imprinted in the intestine by a commensal species peptide mimic.
View Article and Find Full Text PDFThe splenic white pulp is underpinned by poorly characterized stromal cells that demarcate distinct immune cell microenvironments. Here we establish fibroblastic reticular cell (FRC)-specific fate-mapping in mice to define their embryonic origin and differentiation trajectories. Our data show that all reticular cell subsets descend from multipotent progenitors emerging at embryonic day 19.
View Article and Find Full Text PDFAdaptive immune responses develop in secondary lymphoid organs such as lymph nodes (LNs) in a well-coordinated series of interactions between migrating immune cells and resident stromal cells. Although many processes that occur in LNs are well understood from an immunological point of view, our understanding of the fundamental organization and mechanisms that drive these processes is still incomplete. The aim of systems biology approaches is to unravel the complexity of biological systems and describe emergent properties that arise from interactions between individual constituents of the system.
View Article and Find Full Text PDFImmune protection of the body cavities depends on the swift activation of innate and adaptive immune responses in nonclassical secondary lymphoid organs known as fat-associated lymphoid clusters (FALCs). Compared with classical secondary lymphoid organs such as lymph nodes and Peyer's patches, FALCs develop along distinct differentiation trajectories and display a reduced structural complexity. Although it is well established that fibroblastic reticular cells (FRCs) are an integral component of the immune-stimulating infrastructure of classical secondary lymphoid organs, the role of FRCs in FALC-dependent peritoneal immunity remains unclear.
View Article and Find Full Text PDFThe tumor microenvironment harbors cancer-associated fibroblasts that function as major modulators of cancer progression. Here, we assessed to which extent distinct cancer-associated fibroblast subsets impact mammary carcinoma growth and cancer cell stemness in an orthotopic murine model. We found that fibroblasts expressing the Cre recombinase under the control of the interleukin 7 promoter occupied mainly the tumor margin where they physically interacted with tumor cells.
View Article and Find Full Text PDFLymph nodes (LNs) are strategically situated throughout the body at junctures of the blood vascular and lymphatic systems to direct immune responses against antigens draining from peripheral tissues. The current paradigm describes LN development as a programmed process that is governed through the interaction between mesenchymal lymphoid tissue organizer (LTo) cells and hematopoietic lymphoid tissue inducer (LTi) cells. Using cell-type-specific ablation of key molecules involved in lymphoid organogenesis, we found that initiation of LN development is dependent on LTi-cell-mediated activation of lymphatic endothelial cells (LECs) and that engagement of mesenchymal stromal cells is a succeeding event.
View Article and Find Full Text PDFSecondary lymphoid organs have developed segregated niches that are able to initiate and maintain effective immune responses. Such global organization requires tight control of diverse cellular components, specifically those that regulate lymphocyte trafficking. Fibroblastic reticular cells (FRCs) form a densely interconnected network in lymph nodes and provide key factors necessary for T cell migration and retention, and foster subsequent interactions between T cells and dendritic cells.
View Article and Find Full Text PDFFibroblastic reticular cells (FRCs) of secondary lymphoid organs form distinct niches for interaction with hematopoietic cells. We found here that production of the cytokine IL-15 by FRCs was essential for the maintenance of group 1 innate lymphoid cells (ILCs) in Peyer's patches and mesenteric lymph nodes. Moreover, FRC-specific ablation of the innate immunological sensing adaptor MyD88 unleashed IL-15 production by FRCs during infection with an enteropathogenic virus, which led to hyperactivation of group 1 ILCs and substantially altered the differentiation of helper T cells.
View Article and Find Full Text PDFFibroblastic reticular cells (FRCs) form the cellular scaffold of lymph nodes (LNs) and establish distinct microenvironmental niches to provide key molecules that drive innate and adaptive immune responses and control immune regulatory processes. Here, we have used a graph theory-based systems biology approach to determine topological properties and robustness of the LN FRC network in mice. We found that the FRC network exhibits an imprinted small-world topology that is fully regenerated within 4 wk after complete FRC ablation.
View Article and Find Full Text PDFThe thymic epithelium forms specialized niches to enable thymocyte differentiation. While the common epithelial progenitor of medullary and cortical thymic epithelial cells (mTECs and cTECs) is well defined, early stages of mTEC lineage specification have remained elusive. Here, we utilized in vivo targeting of mTECs to resolve their differentiation pathways and to determine whether mTEC progenitors participate in thymocyte education.
View Article and Find Full Text PDFA challenge when designing membrane-active peptide antibiotics with therapeutic potential is how to ensure a useful antibacterial activity whilst avoiding unacceptable cytotoxicity for host cells. Understanding their mode of interaction with membranes and the reasons underlying their ability to distinguish between bacterial and eukaryotic cytoplasmic cells is crucial for any rational attempt to improve this selectivity. We have approached this problem by analysing natural helical antimicrobial peptides of anuran origin, using a structure-activity database to determine an antimicrobial selectivity index (SI) relating the minimal inhibitory concentration against Escherichia coli to the haemolytic activity (SI=HC(50)/MIC).
View Article and Find Full Text PDFAnuran tissues, and especially skin, are a rich source of bioactive peptides and their precursors. We here present a manually curated database of antimicrobial and other defense peptides with a total of 2571 entries, most of them in the precursor form with demarcated signal peptide (SP), acidic proregion(s) and bioactive moiety(s) corresponding to 1923 non-identical bioactive sequences. Search functions on the corresponding web server facilitate the extraction of six distinct SP classes.
View Article and Find Full Text PDFWe describe computational approaches for identifying promising lead candidates for the development of peptide antibiotics, in the context of quantitative structure-activity relationships (QSAR) studies for this type of molecule. A first approach deals with predicting the selectivity properties of generated antimicrobial peptide sequences in terms of measured therapeutic indices (TI) for known antimicrobial peptides (AMPs). Based on a training set of anuran AMPs, the concept of sequence moments was used to construct algorithms that could predict TIs for a second test set of natural AMPs and could also predict the effect of point mutations on TI values.
View Article and Find Full Text PDF