Pure epigenetic variation, or epigenetic variation that is independent of genetic context, may provide a mechanism for phenotypic variation in the absence of DNA mutations. To estimate the extent of pure epigenetic variation within and across generations and to identify the DNA regions targeted, a group of eight plants derived from a highly inbred line of maize (Zea mays) was analyzed by the methylation-sensitive amplified polymorphism (MSAP) technique. We found that cytosine methylation (mC) differences among individuals accounted for up to 7.
View Article and Find Full Text PDFFood Addit Contam Part B Surveill
December 2014
We analysed a total of 2258 grain samples over a 3-year period (2006-2008) from 93 storage centers in the principal maize cultivation area of Italy to establish the levels of fumonisin contamination. Fumonisin concentrations were measured using ELISA (RIDASCREEN) fumonisin test kits. Mean levels of contamination were remarkably high in each year, with the highest value in 2006 (10.
View Article and Find Full Text PDFBackground: The changes in storage reserve accumulation during maize (Zea mays L.) grain maturation are well established. However, the key molecular determinants controlling carbon flux to the grain and the partitioning of carbon to starch and protein are more elusive.
View Article and Find Full Text PDFThe maize (Zea mays) Opaque2 (O2) gene encodes an endosperm-specific bZIP-type transcription activator. In this study, we analyzed O2 targets for chromatin and DNA modifications and transcription factors binding during endosperm development and in leaves. In leaves, O2 targets exhibit high cytosine methylation levels and transcriptionally silent chromatin, enriched with histones H3 dimethylated at Lys-9 (H3K9me2) and Lys-27 (H3K27me2).
View Article and Find Full Text PDFTo shed light on the specific contribution of HDA101 in modulating metabolic pathways in the maize seed, changes in the metabolic profiles of kernels obtained from hda101 mutant plants have been investigated by a metabonomic approach. Dynamic properties of chromatin folding can be mediated by enzymes that modify DNA and histones. The enzymes responsible for the steady-state of histone acetylation are histone acetyltransferase and histone deacetylase (HDA).
View Article and Find Full Text PDFEnzymes catalyzing histone acetylation and deacetylation contribute to the modulation of chromatin structure, thus playing an important role in regulating gene and genome activity. We showed that downregulation and overexpression of the maize (Zea mays) Rpd3-type hda101 histone deacetylase gene induced morphological and developmental defects. Total levels of acetylated histones and histone acetylation of both repetitive and nonrepetitive sequences were affected in hda101 transgenic mutants.
View Article and Find Full Text PDFThe aim of the research was to investigate metabolic variations associated with genetic modifications in the grains of Zea mays using metabonomic techniques. With this in mind, the non-targeted characteristic of the technique is useful to identify metabolites peculiar to the genetic modification and initially undefined. The results obtained showed that the genetic modification, introducing Cry1Ab gene expression, induces metabolic variations involving the primary nitrogen pathway.
View Article and Find Full Text PDFThe cuticle covering the aerial organs of land plants plays a protective role against several biotic and abiotic stresses and, in addition, participates in a variety of plant-insect interactions. Here, we describe the molecular cloning and characterization of the maize (Zea mays) GLOSSY1 (GL1) gene, a component of the pathway leading to cuticular wax biosynthesis in seedling leaves. The genomic and cDNA sequences we isolated differ significantly in length and in most of the coding region from those previously identified.
View Article and Find Full Text PDFThe aim of this research was to verify the possibility of identifying and classifying maize seeds obtained from transgenic plants, in different classes according to the modification, on the basis of the concerted variation in metabolite levels detected by NMR spectra. It was possible to recognise the discriminant metabolites of transgenic samples as well as to classify non-a priori defined samples of maize. It is important to underline that the obtained results are useful to point out the metabolic consequences of a specific genic modification on a plant, without using a targeted analysis of the different metabolites, in fact it was possible to classify the seeds also without the complete assignment of the spectra.
View Article and Find Full Text PDFPlants contain proteins that are capable of inactivating ribosomes, commonly referred to as Ribosome Inactivating Proteins (RIPs). These particular plant proteins have received attention in biological and biomedical research because of their unique biological activities towards animals and human cells as cell-killing agents. Some of the best-characterised RIPs have been isolated from exotic plants, but they have also been found in cereals and other food crops.
View Article and Find Full Text PDFWe analyzed the expression profile and cellular localization of the maize (Zea mays) Rpd3-type histone deacetylases genes ZmRpd3/101, ZmRpd3/102, and ZmRpd3/108 (indicated as ZmHDA101, ZmHDA102, and ZmHDA108 in the Plant Chromatin Database). This study shows that maize Rpd3 transcripts are present in all the organs and cellular domains analyzed, but we found that their amounts change during development, accumulating in the inner region of the endosperm, in vascular zones of the nucellus, in the tapetum, and in the tetrads. A similar expression profile and nucleus-cytoplasmic localization was observed for ZmRpd3 proteins.
View Article and Find Full Text PDFIn mammalian cells the product of the human retinoblastoma tumour suppressor gene (pRb) can recruit Rpd3-like histone deacetylases to repress transcription. In this study, we investigated whether this mechanism might also be relevant in plants and found both conserved and distinct features. The expression profiles of the Zea mays Rpd3-type histone deacetylase (ZmRpd3I) and the retinoblastoma-related (ZmRBR1) homologues were analysed during endosperm development.
View Article and Find Full Text PDF