A coherent optical fiber sensor with adequate sensitivity for detecting the acoustic emission (AE) during the propagation of a crack in a ferrous material is presented. The proposed fiber optic sensor is successfully compared in terms of the SNR (Signal to Noise Ratio) and detectable AE energy levels to commercially available AE piezo-transducers sensors and is proven to be an effective and advantageous alternative for sensing and monitoring fatigue damage in structural applications.
View Article and Find Full Text PDFThe fundamental intuition that Carnot had in analyzing the operation of steam machines is that something remains constant during the reversible thermodynamic cycle. This invariant quantity was later named "entropy" by Clausius. Jaynes proposed a unitary view of thermodynamics and information theory based on statistical thermodynamics.
View Article and Find Full Text PDFA novel fiber optic sensing technology for high frequency dynamics detection is proposed in this paper, specifically tailored for structural health monitoring applications based on strain wave analysis, for both passive impact identification and active Lamb wave monitoring. The sensing solution relies on a fiber optic-based interferometric architecture associated to an innovative coherent detection scheme, which retrieves in a completely passive way the high-frequency phase information of the received optical signal. The sensing fiber can be arranged into different layouts, depending on the requirement of the specific application, in order to enhance the sensor sensitivity while still ensuring a limited gauge length if punctual measures are required.
View Article and Find Full Text PDFThe complexity and the power consumption of digital signal processing are crucial issues in optical transmission systems based on mode division multiplexing and coherent multiple-input multiple-output (MIMO) processing at the receiver. In this paper the inherent characteristic of spatial separation between fiber modes is exploited, getting a MIMO system where joint demultiplexing and detection is based on spatially separated photodetectors. After photodetection, one has a MIMO system with nonlinear crosstalk between modes.
View Article and Find Full Text PDFA performance comparison between the electrical Cu-based backplane and a full-optical fiber-based backplane is presented in terms of capacity and power consumption. By means of systematic simulations we find the electrical configuration, which allows to optimize the Cu-based backplane by exploiting the best technologies available today. On the other hand, a fiber-based optical backplane is proposed by exploiting the most performing VCSEL sources.
View Article and Find Full Text PDFThe dependence of propagation performance on the signal baud-rate is investigated by simulations for WDM PDM-16QAM systems operating at a spectral efficiency of 4 b/s/Hz. We take into account the case of transmission over uncompensated links, both for standard single-mode fiber and non-zero dispersion-shifted fiber. Three baud-rates are tested: 16.
View Article and Find Full Text PDFA tunable device based on chirped microstrip delay lines is proposed to precompensate at the transmitter; the chromatic dispersion accumulated during optical fiber propagation. Compensated dispersion is finely tuned by changing the effective dielectric constant of the microstrip line by means of moving dielectric perturbers. Compensation up to 51 ps/GHz necessary to propagate over 400 km uncompensated standard single-mode fiber at 10 Gb/s is demonstrated.
View Article and Find Full Text PDFWe experimentally compare the effectiveness of three different optical-phase-conjugation-based nonlinearity-compensation strategies on a transmission system employing phase-modulated signals, and hence affected by the Gordon-Mollenauer effect. We demonstrate that it is possible to obtain significant nonlinearity compensation, but that no improvement is obtained using configurations specifically aimed at the compensation of the nonlinear phase noise.
View Article and Find Full Text PDFThe results of a theoretical and experimental investigation of the Gouy effect in Bessel beams are presented. We point out that the peculiar feature of the Bessel beams of being nondiffracting is related to the accumulation of an extra axial phase shift (i.e.
View Article and Find Full Text PDFWe report on the direct observation of backscattering induced by sidewall roughness in high-index-contrast optical waveguides based on total internal reflection. Our results demonstrate that backscattering is one of the most severe limiting factors in state-of-the art silicon on insulator nanowires employed in densely integrated photonics. We also derive the general relationship between backscattering and geometrical and optical parameters of the waveguide.
View Article and Find Full Text PDF1.55-microm single-mode VCSEL frequency chirp behavior is investigated in under-threshold and above-threshold operating conditions for different VCSEL-to-VCSEL injection locking configurations with respect to free-running case. We experimentally evaluated the capability of adjusting the frequency chirp, reducing its value and inverting the sign.
View Article and Find Full Text PDFAt bit rates comparable with the Brillouin shift, i.e. higher than 10 Gbit/s, the signal and the Brillouin backscattered spectra partially overlap.
View Article and Find Full Text PDFThe interest towards passive control of the light polarization through nonlinear effects has been stimulated by recent works: in particular a polarization pulling effect has been obtained by means of stimulated Brillouin scattering. Here we investigate the condition for obtaining polarization pulling by exploiting the stimulated Raman scattering, which is most suitable for optical communications thanks to its large gain bandwidth. The role of the polarization-dependent Raman amplification and of the random fiber birefringence is clarified by theoretical considerations and numerical simulations starting from the vector theory of the Raman effect in optical fiber.
View Article and Find Full Text PDFWe present a technological approach to the realization of channeled optical waveguides, starting from reactively sputtered tellurite glass thin films, grown on silica-coated 4" Si wafers. In particular, optical lithographic process and etching recipes have been developed to overcome the solubility of TeO(2) films in aqueous solutions, and to process them into high-index contrast structures with minimized post-etch roughness. Optical tests on preliminary rib waveguide geometries feature 6.
View Article and Find Full Text PDFA reconfigurable coupled-resonator optical waveguide made of a few directly coupled ring resonators is employed to control the delay of data streams modulated at tens of gigabits per second. A delay of 8 bit lengths (1 optical byte) with a small pulse broadening and 1 dB/bit fractional loss is achieved by using only eight rings. The limiting role of waveguide loss and spurious backreflections is experimentally investigated.
View Article and Find Full Text PDFWe experimentally investigate the first-order polarization-mode dispersion (PMD) tolerance of two polarization-multiplexed (POLMUX) RZ-DQPSK signals at overall 40 Gb/s. The polarization demultiplexing is enabled by an automatic endless polarization stabilizer. Time-interleaving the two orthogonally polarized RZ-DQPSK signals minimizes the crosstalk due to the non-ideal polarization stabilization, while it represents the worstcase for the PMD-induced crosstalk.
View Article and Find Full Text PDFA coupled-resonator optical waveguide (CROW) consisting of a chain of directly coupled ring-resonators (RRs) fabricated in 4.5%-indexcontrast silicon oxynitride technology is employed to control the delay of optical pulses with continuity and over several bit-slots. The moderate deterioration of the signal quality versus the delay is demonstrated by the observation of error-free transmission (BER < 10(-9)) at 10 Gbit/s for fractional delays of up to 3 bits, with fractional losses below 1 dB per bit-delay.
View Article and Find Full Text PDFThe autocorrelation of a modulated coherent light source is used as a probe pulse in a time-domain interferometry scheme. With respect to conventional techniques, higher flexibility in selecting the shape of the probe pulse can be achieved by simply acting on the modulation parameters. The complex amplitude of short pulses propagating through a generic optical device can be directly measured, with no need for fast sampling and time synchronization.
View Article and Find Full Text PDFA novel method for measuring local stress distributions and birefringence of films on substrates and planar optical waveguides, with submicrometric resolution, is presented. The technique relies on a reflective tomographic configuration, applied in conjunction with a polarimetric setup, which processes the stress-induced change of the state of polarization of a laser probe beam reflected at the waveguide-substrate (film-substrate) interface. By this means, theoretically foreseen stress behavior can be experimentally verified and spurious or induced local stress variations in integrated optics components can also be brought into evidence.
View Article and Find Full Text PDFThe effect of the polarization rotation induced by curved waveguides on the spectral behavior of phase shifter ring resonators is investigated both theoretically and experimentally. At resonance the polarization rotation that takes place in curved waveguides is strongly enhanced. The effect can be detrimental, or it can be exploited for new devices.
View Article and Find Full Text PDFWe present a novel model for calculating the bit error rate in optical communication systems in the case of on-off keying intensity modulation and optically preamplified direct detection. The model accounts for the intersymbol interference and is based on the Laguerre photon-count probability distribution predicted by photodetection theory. For a non-return-to-zero modulation format an accurate value of the sensitivity for a quantum-limited receiver of 33.
View Article and Find Full Text PDFThe diffraction effects induced by a thick holographic grating on the propagation of a finite Gaussian beam are theoretically analyzed by means of the coupled-wave theory and the beam propagation method. Distortion of the transmitted and diffracted beams is simulated as a function of the grating parameters. Theoretical results are verified by experimentation realized by use of LiNbO3 volume gratings read out by a 1550-nm Gaussian beam, typical of optical fiber communications.
View Article and Find Full Text PDFModal conversion between the fundamental mode and the first-order (leaky) mode has been experimentally investigated in high-index-contrast integrated-optical bent waveguides. The matched bend condition has been experimentally confirmed on cascaded bends, and the effect of both matched and unmatched bends on Y branches has been investigated. Good agreement between theoretical predictions and experimental results for both monomode and multimode waveguides is achieved.
View Article and Find Full Text PDFTo recognize digital streams of digital data, all-optical and passive techniques able to discriminate optical bit words in real time are presented. Discrimination capability of different correlators, both in free space architectures and in delay lines structures, is theoretically and experimentally analyzed. Experimental performances in word recognition are shown in the case of a volume holographic correlator, in the case of a lithographic phase-only-filter correlator, and in the case of a novel coherent delay lines correlator operating at the wavelength 1550 nm and at the bit rate of 2.
View Article and Find Full Text PDFThe design and characterization of ring-resonator-based filters with free spectral ranges of 100 and 50 GHz by use of SiO(x)N(y) technology is presented. Fiber-to-fiber insertion losses of 4.4 dB on the drop port and 2.
View Article and Find Full Text PDF