Publications by authors named "Mario Marchi"

Metamodulation shifted the scenario of the central neuromodulation from a simplified unimodal model to a multimodal one. It involves different receptors/membrane proteins physically associated or merely colocalized that act in concert to control the neuronal functions influencing each other. Defects or maladaptation of metamodulation would subserve neuropsychiatric disorders or even synaptic adaptations relevant to drug dependence.

View Article and Find Full Text PDF

Neuronal nicotinic acetylcholine receptors (nAChRs) are widely distributed in both the peripheral and the central nervous systems. nAChRs exert a crucial modulatory influence on several brain biological processes; they are involved in a variety of neuronal diseases including Parkinson's disease, Alzheimer's disease, epilepsy, and nicotine addiction. The influence of nAChRs on brain function depends on the activity of other neurotransmitter receptors that co-exist with nAChRs on neurons.

View Article and Find Full Text PDF

The glutamatergic nerve endings of a rat prefrontal cortex (PFc) possess presynaptic 5-HT heteroreceptors and mGlu2/3 autoreceptors, whose activation inhibits glutamate exocytosis, and is measured as 15 mM KCl-evoked [H]D-aspartate ([H]D-asp) release (which mimics glutamate exocytosis). The concomitant activation of the two receptors nulls their inhibitory activities, whereas blockade of the 5-HT heteroreceptors with MDL11,939 (1 μM) strengthens the inhibitory effect elicited by the mGlu2/3 receptor agonist LY329268 (1 μM). 5-HT receptor antagonists (MDL11,939; ketanserin; trazodone) amplify the impact of low (3 nM) LY379268.

View Article and Find Full Text PDF

In recent years, the inhibition of beta-amyloid (Aβ) aggregation has emerged as a potential strategy for Alzheimer's disease. KLVFF, a small peptide corresponding to the aminoacidic sequence 16-20 of Aβ, reduces Aβ fibrillation dose dependently. Therefore, the toxic and functional characterization of its brain activity is fundamental for clarifying its potential therapeutic role.

View Article and Find Full Text PDF

Synaptosomes are re-sealed pinched off nerve terminals that maintain all the main structural and functional features of the original structures and that are appropriate to study presynaptic events. Because of the discovery of new structural and molecular events that dictate the efficiency of transmitter release and of its receptor-mediated control in the central nervous system, the interest in this tissue preparation is continuously renewing. Most of these events have been already discussed in previous reviews, but few of them were not and deserve some comments since they could suggest new functional and possibly therapeutic considerations.

View Article and Find Full Text PDF

Presynaptic mGlu2/3 autoreceptors exist in rat spinal cord nerve terminals as suggested by the finding that LY379268 inhibited the 15 mM KCl-evoked release of [H]D-aspartate ([H]D-Asp) in a LY341495-sensitive manner. Spinal cord glutamatergic nerve terminals also possess presynaptic release-regulating 5-HT heteroreceptors. Actually, the 15 mM KCl-evoked [H]D-Asp exocytosis from spinal cord synaptosomes was reduced by the 5-HT agonist (±)DOI, an effect reversed by the 5-HT antagonists MDL11,939, MDL100907, ketanserin and trazodone (TZD).

View Article and Find Full Text PDF

The objective of the study is to assess the predictive performance of three different techniques as classifiers for extra-intestinal manifestations in 152 patients with Crohn's disease. Naïve Bayes, Bayesian Additive Regression Trees and Bayesian Networks implemented using a Greedy Thick Thinning algorithm for learning dependencies among variables and EM algorithm for learning conditional probabilities associated to each variable are taken into account. Three sets of variables were considered: (i) disease characteristics: presentation, behavior and location (ii) risk factors: age, gender, smoke and familiarity and (iii) genetic polymorphisms of the NOD2, CD14, TNFA, IL12B, and IL1RN genes, whose involvement in Crohn's disease is known or suspected.

View Article and Find Full Text PDF

Fingolimod, the first oral, disease-modifying therapy for MS, has been recently proposed to modulate glutamate transmission in the central nervous system (CNS) of mice suffering from Experimental Autoimmune Encephalomyelitis (EAE) and in MS patients. Our study aims at investigating whether oral fingolimod recovers presynaptic defects that occur at different stages of disease in the CNS of EAE mice. In vivo prophylactic (0.

View Article and Find Full Text PDF

Context: Patients with adrenal incidentalomas (AI) may experience detrimental consequences due to a minimal cortisol excess sustained by adrenal adenoma. SNPs of the glucocorticoid receptor gene (NR3C1) modulate individual sensitivity to glucocorticoids and may interfere with the clinical presentation.

Objective: To compare the frequency of N363S, ER22/23EK and BclI SNPs in patients with AI with the general population and to evaluate whether these SNPs are linked to consequences of cortisol excess.

View Article and Find Full Text PDF

Cannabis use has been frequently associated with sex-dependent effects on brain and behavior. We previously demonstrated that adult female rats exposed to delta-9-tetrahydrocannabinol (THC) during adolescence develop long-term alterations in cognitive performances and emotional reactivity, whereas preliminary evidence suggests the presence of a different phenotype in male rats. To thoroughly depict the behavioral phenotype induced by adolescent THC exposure in male rats, we treated adolescent animals with increasing doses of THC twice a day (PND 35-45) and, at adulthood, we performed a battery of behavioral tests to measure affective- and psychotic-like symptoms as well as cognition.

View Article and Find Full Text PDF

Primary hyperoxaluria type I (PH1) is an autosomal-recessive inborn error of liver metabolism caused by alanine:glyoxylate aminotransferase (AGT) deficiency. In silico modeling of liver metabolism in PH1 recapitulated accumulation of known biomarkers as well as alteration of histidine and histamine levels, which we confirmed in vitro, in vivo, and in PH1 patients. AGT-deficient mice showed decreased vascular permeability, a readout of in vivo histamine activity.

View Article and Find Full Text PDF

Previous studies had shown that the HIV-1 capsidic glycoprotein gp120 (strain IIIB) modulates presynaptic release-regulating NMDA receptors on noradrenergic and glutamatergic terminals. This study aims to assess whether the chemokine CXC4 receptors (CXCR4s) has a role in the gp120-mediated effects. The effect of CXCL12, the endogenous ligand at CXCR4, on the NMDA-mediated releasing activity was therefore investigated.

View Article and Find Full Text PDF

Background: Primary hyperoxaluria (PH) is a rare autosomal recessive disease commonly arising in childhood and presenting with nephrolithiasis, nephrocalcinosis and/or chronic renal failure. Three genes are currently known as responsible: alanine-glyoxylate aminotransferase (AGXT, PH type 1), glyoxylate reductase/hydroxypyruvate reductase (GRHPR, PH type 2), and 4-hydroxy-2-oxoglutarate aldolase (HOGA1, PH type 3). In our Centre, at the end of 2014 molecular diagnosis of PH1 had been performed in 80 patients, while one patient received a PH2 diagnosis.

View Article and Find Full Text PDF

Background And Purpose: Presynaptic, release-regulating metabotropic glutamate 2 and 3 (mGlu2/3) autoreceptors exist in the CNS. They represent suitable targets for therapeutic approaches to central diseases that are typified by hyperglutamatergicity. The availability of specific ligands able to differentiate between mGlu2 and mGlu3 subunits allows us to further characterize these autoreceptors.

View Article and Find Full Text PDF

This review focuses on a specific interaction occurring between the nicotinic cholinergic receptors (nAChRs) and the glutamatergic receptors (GluRs) at the nerve endings level. We have employed synaptosomes in superfusion and supplemented and integrated our findings with data obtained using techniques from molecular biology and immuno-cytochemistry, and the assessment of receptor trafficking. In particular, we characterize the following: (1) the direct and unequivocal localization of native α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) glutamatergic receptors on specific nerve terminals, (2) their pharmacological characterization and functional co-localization with nAChRs on the same nerve endings, and (3) the existence of synergistic or antagonistic interactions among them.

View Article and Find Full Text PDF

Activation of c-Jun N-terminal kinase (JNK) signaling pathway is a critical step for neuronal death occurring in several neurological conditions. JNKs can be activated via receptor tyrosine kinases, cytokine receptors, G-protein coupled receptors and ligand-gated ion channels, including the NMDA glutamate receptors. While JNK has been generally associated with postsynaptic NMDA receptors, its presynaptic role remains largely unexplored.

View Article and Find Full Text PDF

Three polyprenyl-1',4'-hydroquinone derivatives, heptaprenyl-1',4'-hydroquinone (1), octaprenyl-1',4'-hydroquinone (2), and hydroxyoctaprenyl-1',4'- hydroquinone (3) were isolated from the marine sponge Sarcotragus spinosulus collected at Baia di Porto Conte, Alghero (Italy). Our findings indicate that the compounds isolated from S. spinosulus can significantly modulate the release of glutamate and acetylcholine in the rat hippocampus and cortex and might, therefore, represent the prototype of a new class of drugs regulating glutamatergic and cholinergic transmission in the mammalian central nervous system.

View Article and Find Full Text PDF

We here provide functional and immunocytochemical evidence supporting the co-localization and functional interaction between nicotinic acetylcholine receptors (nAChRs) and N-methyl-D-aspartic acid receptors (NMDARs) in glutamatergic terminals of the nucleus accumbens (NAc). Immunocytochemical studies showed that a significant percentage of NAc terminals were glutamatergic and possessed GluN1 and α7-containing nAChR. A short-term pre-exposure of synaptosomes to nicotine (30 µM) or choline (1 mM) caused a significant potentiation of the 100 µM NMDA-evoked [(3)H]D-aspartate ([(3)H]D-Asp) outflow, which was prevented by α-bungarotoxin (100 nM).

View Article and Find Full Text PDF

Brugada syndrome is characterised by a typical ECG with ST segment elevation in the right precordial leads. Individuals with this condition are susceptible to ventricular arrhythmias and sudden cardiac death. The principal gene responsible for this syndrome is SCN5A, which encodes the α-subunit of the Nav1.

View Article and Find Full Text PDF

Contradictory results have been reported on the interaction of beta-amyloid (Aβ) with cholinergic receptors. The present paper investigates the modulatory effect of Aβ1-40 on the neurotransmitter release evoked by nicotinic (nAChRs) and muscarinic (mAChRs) receptors. Aβ1-40 inhibits both nicotinic and muscarinic-evoked [(3)H]DA overflow from rat nerve endings.

View Article and Find Full Text PDF

The presynaptic control of dopamine release in the nucleus accumbens (NAc) by glutamate and acetylcholine has a profound impact on reward signaling. Here we provide immunocytochemical and neurochemical evidence supporting the co-localization and functional interaction between nicotinic acetylcholine receptors (nAChRs) and N-methyl-D-aspartic acid (NMDA) receptors in dopaminergic terminals of the NAc. Most NAc dopaminergic terminals possessed the nAChR α4 subunit and the pre-exposure of synaptosomes to nicotine (30 μM) or to the α4β2-containing nAChR agonist 5IA85380 (10 nM) selectively inhibited the NMDA (100 μM)-evoked, but not the 4-aminopyridine (10 μM)-evoked, [(3)H] dopamine outflow; this inhibition was blunted by mecamylamine (10 μM).

View Article and Find Full Text PDF

We investigated on the neuronal nicotinic acetylcholine receptor subtypes involved in the cholinergic control of in vivo hippocampal glutamate (GLU), aspartate (ASP) and inhibitory γ-aminobutyric acid (GABA) overflow. We also investigated on the possible contribution of nicotinic acetylcholine receptors subtypes present on astrocytes in the regulation of the three neurotransmitter amino acids overflow using hippocampal gliosomes and on the effects of beta-amyloid (Aβ) 1-40 on the nicotinic control of amino acid neurotransmitter release. Nicotine was able to enhance the in vivo overflow of the three amino acids being more potent in stimulating GLU overflow.

View Article and Find Full Text PDF

The review examines the multifaceted interactions between cholinergic transmission and beta-amyloid suggesting a continuum in the action of the peptide that at low concentrations (picomolar-low nanomolar) may directly stimulate nicotinic cholinergic receptor while desensitizing them at increasing concentrations (high nanomolar-low micromolar). In addition high beta-amyloid concentrations may reduce the synaptic release of several neurotransmitters, including glutamate, aspartate, GABA, glycine and dopamine, when the release is elicited through cholinergic stimulation but not following depolarization. The effect of beta-amyloid has been observed both in vitro and in vivo in at least three different brain areas (nucleus accumbens, striatum, hippocampus) suggesting that the peptide may exert some general effects even if not all the brain areas have been evaluated.

View Article and Find Full Text PDF