Biofilm formation on catheters is thought to contribute to persistence of catheter-associated urinary tract infections (CAUTI) which represent the most frequent nosocomial infections. Understanding of factors relevant for CAUTI pathogenesis and evaluation of new therapeutics or interference strategies requires a model system that mirrors the physico-chemical conditions prevailing in a catheterized human bladder. The described dynamic model of a catheterized bladder enables to emulate many of the characteristics of a catheterized human bladder albeit in the absence of a bladder epithelium.
View Article and Find Full Text PDFBiofilm formation on catheters is thought to contribute to persistence of catheter-associated urinary tract infections (CAUTI), which represent the most frequent nosocomial infections. Knowledge of genetic factors for catheter colonization is limited, since their role has not been assessed using physicochemical conditions prevailing in a catheterized human bladder. The current study aimed to combine data from a dynamic catheterized bladder model in vitro with in vivo expression analysis for understanding molecular factors relevant for CAUTI caused by Escherichia coli.
View Article and Find Full Text PDF