Efficient cellular fusion of mononuclear precursors is the prerequisite for the generation of fully functional multinucleated bone-resorbing osteoclasts. However, the exact molecular factors and mechanisms controlling osteoclast fusion remain incompletely understood. Here we identify RANKL-mediated activation of caspase-8 as early key event during osteoclast fusion.
View Article and Find Full Text PDFObjective: The study objective was to assess the role of CCL19 lymph node stromal cells of the joint-draining popliteal lymph node (pLN) for the development of arthritis.
Methods: CCL19 lymph node stromal cells were spatiotemporally depleted for five days in the pLN before the onset of collagen-induced arthritis (CIA) using Ccl19-Cre × iDTR mice. In addition, therapeutic treatment with recombinant CCL19-immunoglobulin G (IgG), locally injected in the footpad, was used to confirm the results.
Enhanced osteoclastogenesis and osteoclast activity contribute to the development of osteoporosis, which is characterized by increased bone resorption and inadequate bone formation. As novel antiosteoporotic therapeutics are needed, understanding the genetic regulation of human osteoclastogenesis could help identify potential treatment targets. This study aimed to provide an overview of transcriptional reprogramming during human osteoclast differentiation.
View Article and Find Full Text PDFObjectives: To investigate the effect of the L-arginine metabolism on arthritis and inflammation-mediated bone loss.
Methods: L-arginine was applied to three arthritis models (collagen-induced arthritis, serum-induced arthritis and human TNF transgenic mice). Inflammation was assessed clinically and histologically, while bone changes were quantified by μCT and histomorphometry.
Alcohol is among the most widely consumed dietary substances. Excessive alcohol consumption damages the liver, heart, and brain. Alcohol also has strong immunoregulatory properties.
View Article and Find Full Text PDFButyrophilins are surface receptors belonging to the immunoglobulin superfamily. While several members of the butyrophilin family have been implicated in the development of unconventional T cells, butyrophilin 2a2 (Btn2a2) has been shown to inhibit conventional T cell activation. Here, we demonstrate that in steady state, the primary source of Btn2a2 are thymic epithelial cells (TEC).
View Article and Find Full Text PDFObjective: In this study, we aimed to decipher the gut microbiome (GM) and serum metabolic characteristic of individuals at high risk for rheumatoid arthritis (RA) and to investigate the causative effect of GM on the mucosal immune system and its involvement in the pathogenesis of arthritis.
Methods: Fecal samples were collected from 38 healthy individuals and 53 high-risk RA individuals with anti-citrullinated protein antibody (ACPA) positivity (Pre-RA), 12 of 53 Pre-RA individuals developed RA within 5 years of follow-up. The differences in intestinal microbial composition between the healthy controls and Pre-RA individuals or among Pre-RA subgroups were identified by 16S ribosomal RNA sequencing.
Nat Rev Gastroenterol Hepatol
January 2023
Immune cell trafficking is a complex and tightly regulated process that is indispensable for the body's fight against pathogens. However, it is also increasingly acknowledged that dysregulation of cell trafficking contributes to the pathogenesis of immune-mediated inflammatory diseases (IMIDs) in gastroenterology and hepatology, such as inflammatory bowel disease and primary sclerosing cholangitis. Moreover, altered cell trafficking has also been implicated as a crucial step in the immunopathogenesis of other IMIDs, such as rheumatoid arthritis and multiple sclerosis.
View Article and Find Full Text PDFRheumatoid arthritis (RA) is associated with an increased risk for cardiovascular events driven by abnormal platelet clotting effects. Platelets are produced by megakaryocytes, deriving from megakaryocyte erythrocyte progenitors (MEP) in the bone marrow. Increased megakaryocyte expansion across common autoimmune diseases was shown for RA, systemic lupus erythematosus (SLE) and primary Sjögren's syndrome (pSS).
View Article and Find Full Text PDFBone turnover is finely tuned by cells in the bone milieu, including osteoblasts, osteoclasts, and osteocytes. Osteoclasts are multinucleated giant cells with a bone-resorbing function that play a critical role in regulating skeletal homeostasis. Osteoclast differentiation is characterized by dramatic changes in morphology and gene expression following receptor activator of nuclear factor-kappa-Β ligand (RANKL) stimulation.
View Article and Find Full Text PDFBackground: The impact of the gut and its microbiota are increasingly appreciated in health and disease. Short-chain fatty acids (SCFAs) are among the main metabolites synthesized from bacterial fermentation. Recently, we showed the anti-inflammatory and potentially neuroprotective effect of propionic acid (PA) in multiple sclerosis (MS).
View Article and Find Full Text PDFSoil-transmitted helminths cause widespread disease, infecting ~1.5 billion people living within poverty-stricken regions of tropical and subtropical countries. As adult worms inhabit the intestine alongside bacterial communities, we determined whether the bacterial microbiota impacted on host resistance against intestinal helminth infection.
View Article and Find Full Text PDFWhile type 2 immunity has traditionally been associated with the control of parasitic infections and allergic reactions, increasing evidence suggests that type 2 immunity exerts regulatory functions on inflammatory diseases such as arthritis, and also on bone homeostasis. This review summarizes the current evidence of the regulatory role of type 2 immunity in arthritis and bone. Key type 2 cytokines, like interleukin (IL)-4 and IL-13, but also others such as IL-5, IL-9, IL-25, and IL-33, exert regulatory properties on arthritis, dampening inflammation and inducing resolution of joint swelling.
View Article and Find Full Text PDFInnate lymphoid cells (ILC) not only are responsible for shaping the innate immune response but also actively modulate T cell responses. However, the molecular processes regulating ILC-T cell interaction are not yet completely understood. The protein butyrophilin 2a2 (Btn2a2), a co-stimulatory molecule first identified on antigen-presenting cells, has a pivotal role in the maintenance of T cell homeostasis, but the main effector cell and the respective ligands remain elusive.
View Article and Find Full Text PDFButyrophilins, which are members of the extended B7 family of immunoregulators structurally related to the B7 family, have diverse functions on immune cells as co-stimulatory and co-inhibitory molecules. Despite recent advances in the understanding on butyrophilins' role on adaptive immune cells during infectious or autoimmune diseases, nothing is known about their role in bone homeostasis. Here, we analyzed the role of one specific butyrophilin, namely Btn2a2, as we have recently shown that Btn2a2 is expressed on the monocyte/macrophage lineage that also gives rise to bone degrading osteoclasts.
View Article and Find Full Text PDFBackground: To investigate whether methotrexate treatment may affect the susceptibility to infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Methods: Clinical assessment of symptoms, SARS-CoV-2 RNA, and anti-SARS-CoV-2 IgG in an initial case series of four families and confirmatory case series of seven families, within which one family member developed coronavirus disease 19 (COVID-19) and exposed another family member receiving methotrexate treatment; experimental part with methotrexate treatment of mice and organoids followed by the assessment of mRNA and protein expression of the SARS-CoV-2 receptor angiotensin-converting enzyme (ACE)-2.
Results: In the initial case series, three of four women on a joint ski trip developed COVID-19, while the fourth woman, under treatment with methotrexate, remained virus-free.
Short-chain fatty acids are gut-bacteria-derived metabolites that execute important regulatory functions on adaptive immune responses, yet their influence on inflammation driven by innate immunity remains understudied. Here, we show that propionate treatment in drinking water or upon local application into the joint reduced experimental arthritis and lowered inflammatory tissue priming mediated by synovial fibroblasts. On a cellular level, incubation of synovial fibroblasts with propionate or a physiological mixture of short-chain fatty acids interfered with production of inflammatory mediators and migration and induced immune-regulatory fibroblast senescence.
View Article and Find Full Text PDFBenefits and harms of different components of human diet have been known for hundreds of years. Alcohol is one the highest consumed, abused, and addictive substances worldwide. Consequences of alcohol abuse are increased risks for diseases of the cardiovascular system, liver, and nervous system, as well as reduced immune system function.
View Article and Find Full Text PDFRheumatoid arthritis (RA) is a chronic autoimmune inflammatory disorder that primarily affects the joints. One hypothesis for the pathogenesis of RA is that disease begins at mucosal sites as a consequence of interactions between the mucosal immune system and an aberrant local microbiota, and then transitions to involve the synovial joints. Alterations in the composition of the microbial flora in the lungs, mouth and gut in individuals with preclinical and established RA suggest a role for mucosal dysbiosis in the development and perpetuation of RA, although establishing whether these alterations are the specific consequence of intestinal involvement in the setting of a systemic inflammatory process, or whether they represent a specific localization of disease, is an ongoing challenge.
View Article and Find Full Text PDFTo avoid autoimmunity, it is essential to keep the balance between the defence against pathogens and the maintenance of tolerance to self-antigens. Mucosal inflammation may lead to breakdown of tolerance and activation of autoreactive cells. Growing evidence suggests a major contribution of gut microbiota to the onset of chronic, autoimmune inflammatory diseases including rheumatoid arthritis (RA).
View Article and Find Full Text PDFGut dysbiosis precedes clinic symptoms in rheumatoid arthritis (RA) and has been implicated in the initiation and persistence of RA. The early treatment of RA is critical to better clinical outcome especially for joint destruction. Although dietary interventions have been reported to be beneficial for RA patients, it is unclear to whether diet-induced gut microbiome changes can be a preventive strategy to RA development.
View Article and Find Full Text PDFChronic inflammatory diseases are often initiated and guided by the release of proinflammatory mediators. Rheumatoid arthritis (RA) is caused by an imbalance between the pro- and anti-inflammatory mediators in the joints, thereby favoring chronic inflammation and joint damage. Here, we investigate if short-term high-fiber dietary intervention shifts this towards anti-inflammatory mediators.
View Article and Find Full Text PDF