The quest for efficient thermoelectric materials has intensified with the advent of novel Janus monolayers exhibiting exceptional thermoelectric parameters. In this work, we comprehensively investigate the structural, electronic, transport, phonon, and thermoelectric properties of novel Janus -Pb XY (X=S, Se; Y=Se, Te; X Y) monolayers using density functional theory combined with the Boltzmann transport equation. Our findings unveil the energetic, dynamic, thermal, and mechanical stability of these monolayers, along with their remarkable thermoelectric performance.
View Article and Find Full Text PDFIn this work, we present the potassium niobate (KNbO) nanoparticles as a suitable mesoporous photoelectrode for dye-sensitized solar cells (DSSCs). The KNbO particles were synthesized by the microwave-assisted hydrothermal method using mild conditions and characterized by SEM, XRD, Raman, and UV-Vis diffuse reflectance. The particles presented a pyramidal tower-like shape with an orthorhombic structure and an indirect bandgap of (3.
View Article and Find Full Text PDFPhys Chem Chem Phys
June 2022
The growth of ZnS photoelectrodes on ZnO particles identified as ZnO/ZnS(ZC + TAA) by the microwave-assisted hydrothermal method showed excellent photovoltaic parameters of = 1.2 mA cm and FF = 0.66, even compared to ZnS(ZC + TAA) used as a reference sample with = 0.
View Article and Find Full Text PDFZinc titanates are compounds that have shown great application versatility, including in the field of semiconductors. Solid state reactions, the polymeric precursor method and the hydrothermal method are the most mentioned synthesis of these compounds in the literature. In the present work, we use microwave assisted hydrothermal method (MAH) to synthesize zinc titanate and evaluate its potential for solar cell applications through structural and optical characterization techniques.
View Article and Find Full Text PDFDalton Trans
July 2020
Inorganic hybrid materials have promising applications in absorbers and for the photon harvesting of solar irradiation, such as in DSSC photoanodes. Moreover, investigation of the interactions between the photoanode constituent materials is extremely important, since it is known that the properties of the materials are strongly dependent on the nucleation and growth process. Therefore, the purpose of this work was to synthesize a system consisting of a synergic combination of two inorganic hosts, BaTiO and CaF, synthesized together through a microwave-assisted hydrothermal method, which allows single-phase materials to be obtained after short synthesis times and at low temperatures.
View Article and Find Full Text PDFThe engineering of semiconductor materials for the development of solar cells is of great importance today. Two topics are considered to be of critical importance for the efficiency of Grätzel-type solar cells, the efficiency of charge separation and the efficiency of charge carrier transfer. Thus, one research focus is the combination of semiconductor materials with the aim of reducing charge recombination, which occurs by spatial charge separation.
View Article and Find Full Text PDFStatement Of Problem: The color of dental poly(methyl methacrylate) (PMMA) is conventionally rendered by organic and inorganic pigments, which are usually not bonded to the polymer network. Functionalized ceramic pigments can be used to color PMMA, allowing improved chemical interaction with the resin matrix.
Purpose: The purpose of this in vitro study was to synthesize, functionalize, and characterize pink manganese-doped alumina ceramic pigments.
A microwave-assisted hydrothermal method was applied to synthesize BaZr1-xHfxO3, (BZHO) solid solutions at a low temperature, 140 °C, and relatively short times, 160 min. The detailed features of the crystal structure, at both short and long ranges, as well as the crystal chemistry doping process, are extensively analysed. X-ray diffraction measurements and Raman spectroscopy have been used to confirm that pure and Hf-doped BZO materials present a cubic structure.
View Article and Find Full Text PDFPeriodic first-principles calculations based on density functional theory at the B3LYP level has been carried out to investigate the photoluminescence (PL) emission of BaZrO(3) assembled nanoparticles at room temperature. The defect created in the nanocrystals and their resultant electronic features lead to a diversification of electronic recombination within the BaZrO(3) band gap. Its optical phenomena are discussed in the light of photoluminescence emission at the green-yellow region around 570 nm.
View Article and Find Full Text PDF