Publications by authors named "Mario Kompauer"

Matrix-assisted laser desorption/ionization mass spectrometry imaging is a promising tool in the life sciences for obtaining spatial and chemical information from complex biological samples. State-of-the-art setups combine high mass resolution and high mass accuracy with high lateral resolution, offering untargeted insights into biochemical processes on the single-cell length scale. Despite recent technological breakthroughs, the sensitivity and acquisition speed of many setups are often in competition with achievable pixel resolutions below 25 μm.

View Article and Find Full Text PDF

First results for a new atmospheric-pressure matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging source operating at 213 nm laser wavelength are presented. The activation of analytes in the 213 nm MALDI process at atmospheric pressure was evaluated and compared to results for 337 nm MALDI and electrospray ionization using thermometer molecules. Different sample preparation techniques for nicotinic acid, the matrix with the highest ionization efficiency at 213 nm of all tested matrices, were evaluated and optimized to obtain small crystal sizes, homogenous matrix layer sample coverage, and high ion signal gains.

View Article and Find Full Text PDF

Spatial metabolomics describes the location and chemistry of small molecules involved in metabolic phenotypes, defence molecules and chemical interactions in natural communities. Most current techniques are unable to spatially link the genotype and metabolic phenotype of microorganisms in situ at a scale relevant to microbial interactions. Here, we present a spatial metabolomics pipeline (metaFISH) that combines fluorescence in situ hybridization (FISH) microscopy and high-resolution atmospheric-pressure matrix-assisted laser desorption/ionization mass spectrometry to image host-microbe symbioses and their metabolic interactions.

View Article and Find Full Text PDF

The effect of double bond functionalisation for selective double bond localisation by ultraviolet photodissociation of phosphatidylcholines is investigated. Paternò-Büchi reactions in nanoESI emitter tips enable attachment of acetophenone to double bonds of unsaturated phosphatidylcholines after 100 s of 254 nm light irradiation with about 50-80% reaction yield. Functionalized phosphatidylcholines dissociate upon 266 nm irradiation yielding double bond selective fragment ions in contrast to results for ultraviolet photodissociation of unmodified lipids.

View Article and Find Full Text PDF

We describe an atmospheric pressure matrix-assisted laser desorption-ionization mass spectrometry imaging system that uses long-distance laser triangulation on a micrometer scale to simultaneously obtain topographic and molecular information from 3D surfaces. We studied the topographic distribution of compounds on irregular 3D surfaces of plants and parasites, and we imaged nonplanar tissue sections with high lateral resolution, thereby eliminating height-related signal artifacts.

View Article and Find Full Text PDF

We report an atmospheric pressure (AP) matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) setup with a lateral resolution of 1.4 μm, a mass resolution greater than 100,000, and accuracy below ±2 p.p.

View Article and Find Full Text PDF