Publications by authors named "Mario Kato"

The effects of a single feeding cycle followed by a continuous aeration phase (AND) and a step-feeding cycle followed by intermittent aerobic/idle phases (AND) on the production and emission of nitrous oxide (NO) from aerobic granular sludge (AGS) from real domestic sewage were studied. Higher NO emissions were observed in the AND treatment, and 9.2 ± 4.

View Article and Find Full Text PDF

The removal of the tetra-azo dye Direct Black 22 (DB22) using the microalga was evaluated in the present study, aiming to understand the contribution of different processes (biodegradation, photodegradation, and adsorption) in the removal of this contaminant. The growth and morphological characteristics of were not affected by the presence of the dye in the reaction medium. The efficiency of dye removal was 62.

View Article and Find Full Text PDF

The removal of organic matter and nitrogen from domestic sewage was evaluated using a system composed of two sequential reactors: an anaerobic reactor (ANR) with suspended sludge and an aerobic (AER) reactor with suspended and adhered sludge to polyurethane foams. Nitrogen removal consisted of AER operating at low dissolved oxygen (DO) concentrations; this favoured the simultaneous nitrification and denitrification (SND) process. The concentration of COD and N were 440 mgO.

View Article and Find Full Text PDF
Article Synopsis
  • A reactor using silicone tubes was tested for glycerol fermentation across three phases, where varying glycerol loading rates and pH levels were applied.
  • In the experiments, glycerol consumption reached nearly 90%, primarily producing 1,3-propanediol (1,3-PDO), while ethanol production was observed at higher pH and lower glycerol rates.
  • After one year of using glycerol as the sole carbon source, there was a significant shift in the bacterial community, with 1,3-PDO producers becoming dominant alongside some non-glycerol degrading bacteria.
View Article and Find Full Text PDF

Linear alkylbenzene sulfonate (LAS) is a synthetic anionic surfactant that is found in certain amounts in wastewaters and even in water bodies, despite its known biodegradability. This study aimed to assess the influence of nitrate, sulphate, and iron (III) on LAS anaerobic degradation and biomass microbial diversity. Batch reactors were inoculated with anaerobic biomass, nutrients, LAS (20 mg L), one of the three electron acceptors, and ethanol (40 mg L) as a co-substrate.

View Article and Find Full Text PDF

Microalgal biomass (MB) is a promising feedstock for bioenergy production. Nonetheless, the cell recalcitrance and the low C/N ratio limit the methane yield during anaerobic digestion. As an alternative to overcome these challenges, MB co-digestion with different feedstocks has been proposed.

View Article and Find Full Text PDF

This study investigated the performance of a granular filtration system (GFS) composed of a rock filter (RF), a rapid sand filter (RSF), and an activated carbon filter (ACF), applied to the post-treatment of an anaerobic reactor effluent. Four filtration rates (FR) were applied to the GFS (in m·m·d): 100-60-60, 100-90-90, 200-120-120, and 200-160-160, for RF-RSF-ACF, respectively. A clarified final effluent with low turbidity (~ 10 NTU), solids (~ 6.

View Article and Find Full Text PDF

The effect on the morpho-physiological parameters and yield of sorghum cultivated in a greenhouse with reclaimed water (RW) and (dehydrated sludge (DS) obtained in a sewage treatment plant, was evaluated. Six treatments (T), with five repetitions each, were carried out in entirely randomized blocks. Water (W) was used in T1 (W) (control), T2 (W + NPK), and T3 (W + DS); RW was used in T4 (RW), T5 (RW + P), and T6 (RW + DS).

View Article and Find Full Text PDF

An anaerobic digester was operated at mesophilic temperature and with intermittent mixing conditions to treat waste activated sludge. The organic loading rate (OLR) was increased by decreasing the hydraulic retention time (HRT), and the effect on process performance, digestate characteristics and inactivation of pathogens was investigated. The removal efficiency of total volatile solids (TVS) was also measured by biogas formation.

View Article and Find Full Text PDF

The effect of six important factors on the anaerobic biodegradation of linear alkylbenzene sulphonate (LAS) was evaluated using a response surface methodology. The factors were: (i) co-substrate concentration (CC), (ii) contact time between LAS and microorganisms, (iii) temperature, (iv) hardness, (v) pH, and (vi) LAS source. The results showed that individually or combined, CC with chemical oxygen demand (COD) ≤50 mg L was the factor that mostly favoured LAS biodegradation; whereas at COD >50 mg L, adsorption to sludge and solubilisation in the aqueous medium were favoured.

View Article and Find Full Text PDF

Simultaneous removal of organic matter, nitrogen, and phosphorus, via simultaneous nitrification and denitrification (SND) and enhanced biological phosphorus removal processes, was evaluated in a pilot-scale sequential batch reactor. The focus was on granule's morphology, stability, microbiological composition, and reactor performance while treating diluted domestic wastewater with total chemical oxygen demand (COD) of ≈ 200 mg.L.

View Article and Find Full Text PDF

Real textile wastewater containing high salinity (up to 12.6 g·kg) and surfactant (up to 5.9 mg·L of linear alkylbenzene sulfonate - LAS) was submitted to biological treatment for colour (up to 652 mg Pt-Co·L) and sulphate (up to 1,568.

View Article and Find Full Text PDF

In this study, start-up strategies to develop conventional aerobic granular sludge (AGS) and algal aerobic granular sludge (AAGS) (photogranules), were investigated. The granulation experiment was conducted in four sequencing batch reactors (SBR), of which two were conventional SBRs (RC1, RC2) used as control, and two were photo-SBRs (R1, R2). R1 and RC1 were operated with a 40-min feeding during the reactors´ anaerobic cycle period, whereas R2 and RC2 with a 60-min feeding.

View Article and Find Full Text PDF

2,4-Dinitroanisole (DNAN) is a toxic compound increasingly used by the military that can be released into the environment on the soil of training fields and in the wastewater of manufacturing plants. DNAN's nitro groups are anaerobically reduced to amino groups by microorganisms when electron donors are available. Using anaerobic sludge as the inoculum, we tested different electron donors for DNAN bioreduction at 20 and 30 °C: acetate, ethanol, pyruvate, hydrogen, and hydrogen + pyruvate.

View Article and Find Full Text PDF

Insensitive munitions compounds, such as 2,4-dinitroanisole (DNAN), are replacing conventional explosives. DNAN is anaerobically reduced to 2,4-diaminoanisole (DAAN), a toxic aromatic amine. However, the removal of DAAN under different redox conditions is yet to be elucidated.

View Article and Find Full Text PDF

The use of batch and upflow anaerobic reactors filled with polyurethane foam for pure glycerol fermentation was evaluated. The best reactor operational conditions to obtain high yield and productivity of 1,3-propanediol (1,3-PDO) as the main product and the role of the polyurethane foam in the growth and retention of suspended and attached biomass in the reactors were investigated. In the experiment at 30 °C with a batch reactor (700 mL), biomass growth was mostly as immobilized attached cells, and the achieved 1,3-PDO yield was up to 0.

View Article and Find Full Text PDF

Manipueira is a carbohydrate-rich agro-industrial waste from cassava processing. It is considered well suitable for biotechnological processes, such as hydrogen and carboxylic acids production, due to the high content of easily degradable organic matter. However, the proper methanogenesis inhibition method, inoculum type, and organic loads are factors still limiting the processes.

View Article and Find Full Text PDF

The decision-making process involved in municipal solid waste management (MSWM) must consider more than just financial aspects, which makes it a difficult task in developing countries. The Recife Metropolitan Region (RMR) in the Northeast of Brazil faces a MSWM problem that has been ongoing since the 1970s, with no common solution. In order to direct short-term solutions, three MSWM alternatives were outlined for the RMR, considering the current and future situations, the time and cost involved and social/environmental criteria.

View Article and Find Full Text PDF

Rivers are important ecosystems that are integrated into biogeochemical cycles and constitute an essential resource for numerous human uses. However, the assessment of the biological diversity and composition of microbial communities found in rivers remains incomplete, partly due to methodological constraints which are only recently being resolved with the advent of next generation sequencing (NGS) techniques. Using 454-pyrosequencing of the 16S gene, the present study analyzed the microbial diversity of the planktonic and sediment populations in a tropical river in northeastern Brazil that is exposed to severe pollution.

View Article and Find Full Text PDF

The aim of this study has been to produce 1,3-propanediol (1,3-PDO) from glycerol (gly) fermentation by means of a microbial mixed culture (granular sludge), as well as to establish the operational conditions of two up-flow anaerobic sludge blanket (UASB) reactors in order to achieve a maximum 1,3-PDO yield. The UASB reactors with initial pH values set at 6.8 and 5.

View Article and Find Full Text PDF

The aim of the present study was to assess the bioremediation of estuarine sediments contaminated with diesel oil. The following two experiments were performed: natural attenuation (NA) and stimulated natural attenuation (SNA), using rhamnolipid as biosurfactant. Sediment samples were accommodated into glass columns and then contaminated with diesel oil on the top.

View Article and Find Full Text PDF

Azo dyes, which are widely used in the textile industry, exhibit significant toxic characteristics for the environment and the human population. Sequential anaerobic-aerobic reactor systems are efficient for the degradation of dyes and the mineralization of intermediate compounds; however, little is known about the composition of the microbial communities responsible for dye degradation in these systems. 454-Pyrosequencing of the 16S rRNA gene was employed to assess the bacterial biodiversity and composition of a two-stage (anaerobic-aerobic) pilot-scale reactor that treats effluent from a denim factory.

View Article and Find Full Text PDF

The effect of the initial concentration of linear alkylbenzene sulfonate (LAS) on specific methanogenic activity (SMA) was investigated in this work. Six anaerobic flasks reactors with 1 L of total volume were inoculated with anaerobic sludge (2 g VSS L(-1)). The reactors were assayed for 42 days, and fed with volatile fatty acids, nutrients, and LAS.

View Article and Find Full Text PDF

Background: Brugada syndrome (BrS) is an inherited lethal arrhythmic disorder characterized by syncope and sudden cardiac death from ventricular tachyarrhythmias. Here we identified a novel K817E mutation of SCN5A gene in a man with type 1 BrS electrocardiogram pattern using next-generation sequencing targeted for 73 cardiac disorder-related genes. SCN5A encodes the α-subunit of NaV1.

View Article and Find Full Text PDF

Background:  KCNE1 encodes a modulator of KCNH2 and KCNQ1 delayed rectifier K(+) current channels. KCNE1 mutations might cause long QT syndrome (LQTS) by impairing KCNE1 subunit's modulatory actions on these channels. There are major and minor polymorphismic KCNE1 variants whose 38(th) amino acids are glycine and serine [KCNE1(38G) and KCNE1(38S) subunits], respectively.

View Article and Find Full Text PDF