Ovarian cancer presents a dire prognosis and high mortality rates, necessitating the exploration of alternative therapeutic avenues, particularly in the face of platinum-based chemotherapy resistance. Conventional treatments often overlook the metabolic implications of cancer, but recent research has highlighted the pivotal role of mitochondria in cancer pathogenesis and drug resistance. This study delves into the metabolic landscape of ovarian cancer treatment, focusing on modulating mitochondrial activity using methylene blue (MB).
View Article and Find Full Text PDFOvarian cancer remains a significant challenge, especially in platinum-resistant cases where treatment options are limited. In this study, we investigated the potential of methylene blue (MB) as a metabolic therapy and complementary treatment approach for ovarian cancer. Our findings demonstrated a significant in vivo reduction in the proliferation of TOV112D-based ovarian-cell-line xenografts.
View Article and Find Full Text PDFOptimizing mammalian cell growth and bioproduction is a tedious task. However, due to the inherent complexity of eukaryotic cells, heuristic experimental approaches such as, metabolic engineering and bioprocess design, are frequently integrated with mathematical models of cell culture to improve biological process efficiency and find paths for improvement. Constraint-based metabolic models have evolved over the last two decades to be used for dynamic modelling in addition to providing a linear description of steady-state metabolic systems.
View Article and Find Full Text PDFDendritic cells (DCs) excel at cross-presenting antigens, but their effectiveness as cancer vaccine is limited. Here, we describe a vaccination approach using mesenchymal stromal cells (MSCs) engineered to express the immunoproteasome complex (MSC-IPr). Such modification instills efficient antigen cross-presentation abilities associated with enhanced major histocompatibility complex class I and CD80 expression, production of interleukin-12, and higher chemokine secretion.
View Article and Find Full Text PDFTumor cells are known to favor a glycolytic metabolism over oxidative phosphorylation (OxPhos), which takes place in mitochondria, to produce the energy and building blocks essential for cell maintenance and cell growth. This phenotypic property of tumor cells gives them several advantages over normal cells and is known as the Warburg effect. Tumors can be treated as a metabolic disease by targeting their bioenergetics capacity.
View Article and Find Full Text PDFYarrowia lipolytica is a non-conventional yeast with promising industrial potentials for lipids and citrate production. It is also widely used for studying mitochondrial respiration due to a respiratory chain like those of mammalian cells. In this study we used a genome-scale model (GEM) of Y.
View Article and Find Full Text PDFThe occurrence of mitochondrial respiration has allowed evolution toward more complex and advanced life forms. However, its dysfunction is now also seen as the most probable cause of one of the biggest scourges in human health, cancer. Conventional cancer treatments such as chemotherapy, which mainly focus on disrupting the cell division process, have shown being effective in the attenuation of various cancers but also showing significant limits as well as serious sides effects.
View Article and Find Full Text PDFAlzheimer's disease (AD) and cancer have much in common than previously recognized. These pathologies share common risk factors (inflammation and aging), with similar epidemiological and biochemical features such as impaired mitochondria. Metabolic reprogramming occurs during aging and inflammation.
View Article and Find Full Text PDFAfter blood donation, the red blood cells (RBCs) for transfusion are generally isolated by centrifugation and then filtrated and supplemented with additive solution. The consecutive changes of the extracellular environment participate to the occurrence of storage lesions. In this study, the hypothesis is that restoring physiological levels of uric and ascorbic acids (major plasmatic antioxidants) might correct metabolism defects and protect RBCs from the very beginning of the storage period, to maintain their quality.
View Article and Find Full Text PDFThe Warburg effect, a hallmark of cancer, has recently been identified as a metabolic limitation of Chinese Hamster Ovary (CHO) cells, the primary platform for the production of monoclonal antibodies (mAb). Metabolic engineering approaches, including genetic modifications and feeding strategies, have been attempted to impose the metabolic prevalence of respiration over aerobic glycolysis. Their main objective lies in decreasing lactate production while improving energy efficiency.
View Article and Find Full Text PDFThe use of microorganisms is a promising option for an eco-efficient and successful conversion of hardwood hemicelluloses to biofuels. The focus of this work is the treatment of hemicellulosic pre-hydrolysate by flocculation, followed by simultaneous or separate detoxification with Ureibacillus thermosphaericus and Cupriavidus taiwanensis co-culture, and hydrolysis with Paenibacillus campinasensis. A reduction of phenolic compounds was achieved mainly after flocculation, applied as a first detoxification step, but no increase in sugars concentration was observed.
View Article and Find Full Text PDFBackground: Microalgae have been proposed as potential platform to produce lipid-derived products, such as biofuels. Knowledge on the intracellular carbon flow distribution may identify key metabolic processes during lipid synthesis thus refining culture/genetic strategies to maximize cell lipid productivity. A kinetic metabolic model simulating cell metabolic behavior and lipid production was first applied in the microalgae platform Chlorella protothecoides under heterotrophic condition.
View Article and Find Full Text PDFIn the recent years, cancer research succeeded with sensitive detection methods, targeted drug delivery systems, and the identification of a large set of genes differently expressed. However, although most therapies are still based on antimitotic agents, which are causing wide secondary effects, there is an increasing interest for metabolic therapies that can minimize side effects. In the early 20 century, Otto Warburg revealed that cancer cells rely on the cytoplasmic fermentation of glucose to lactic acid for energy synthesis (called "Warburg effect").
View Article and Find Full Text PDFButanol, a fuel with better characteristics than ethanol, can be produced via acetone-butanol-ethanol (ABE) fermentation using lignocellulosic biomass as a carbon source. However, many inhibitors present in the hydrolysate limit the yield of the fermentation process. In this work, a detoxification technology combining flocculation and biodetoxification within a bacterial co-culture composed of Ureibacillus thermosphaericus and Cupriavidus taiwanensis is presented for the first time.
View Article and Find Full Text PDFBecause of their unique ability to modulate the immune system, mesenchymal stromal cells (MSCs) are widely studied to develop cell therapies for detrimental immune and inflammatory disorders. However, controlling the final cell phenotype and determining immunosuppressive function following cell amplification in vitro often requires prolonged cell culture assays, all of which contribute to major bottlenecks, limiting the clinical emergence of cell therapies. For instance, the multipotent Wharton's Jelly mesenchymal stem/stromal cells (WJMSC), extracted from human umbilical cord, exhibit immunosuppressive traits under pro-inflammatory conditions, in the presence of interferon-γ (IFNγ), and tumor necrosis factor-α (TNFα).
View Article and Find Full Text PDFCurrently, the predominant hypothesis explains cellular differentiation and behaviour as an essentially genetically driven intracellular process, suggesting a gene-centrism paradigm. However, although many living species genetic has now been described, there is still a large gap between the genetic information interpretation and cell behaviour prediction. Indeed, the physical mechanisms underlying the cell differentiation and proliferation, which are now known or suspected to guide such as the flow of energy through cells and tissues, have been often overlooked.
View Article and Find Full Text PDFThe present study reveals that supplementing sodium acetate (NaAc) strongly stimulates riboflavin production in acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum ATCC 824 with xylose as carbon source. Riboflavin production increased from undetectable concentrations to ∼0.2 g L (0.
View Article and Find Full Text PDFRecent years have witnessed an increasing interest at understanding the role of myeloid-derived suppressor cells (MDSCs) in cancer-induced immunosuppression, with efforts to inhibit their maturation and/or their activity. We have thus modelled MDSCs central carbon metabolism and bioenergetics dynamic, calibrating the model using experimental data on in vitro matured mice bone marrow cells into MDSCs. The model was then used to probe the cells metabolic state and dynamics, performing a dynamic metabolic flux analysis (dMFA) study.
View Article and Find Full Text PDFWe present a method for computing thermodynamically feasible elementary flux modes (tEFMs) using equilibrium constants without need of internal metabolite concentrations. The method is compared with the method based on a binary distinction between reversible and irreversible reactions. When all reactions are reversible, adding the constraints based on equilibrium constants reduces the number of elementary flux modes (EFMs) by a factor of two.
View Article and Find Full Text PDFBackground: Microalgae have the potential to rapidly accumulate lipids of high interest for the food, cosmetics, pharmaceutical and energy (e.g. biodiesel) industries.
View Article and Find Full Text PDFWe have developed a heterodimeric coiled-coil system based on two complementary peptides, namely (EVSALEK) and (KVSALKE), or E and K, for the attachment of E-tagged biomolecules onto K-decorated biomaterials. We here explore two approaches to control the strength and the stability of the E/K coiled-coil complex, and thus its potential for the controlled release of biomolecules. Those are Leucine-to-Alanine mutations in the K peptide (4 peptides with 0 to 3 mutations) and multivalent presentation of the E peptide (6 bio-objects from monomeric to dimeric and n-meric).
View Article and Find Full Text PDFHemicellulose hydrolysates, sugar-rich feedstocks used in biobutanol refinery, are normally obtained by adding sodium hydroxide in the hydrolyze process. However, the resulting high sodium concentration in the hydrolysate inhibits ABE (acetone-butanol-ethanol) fermentation, and thus limits the use of these low-cost feedstocks. We have thus studied the effect of high sodium on the metabolic behavior of Clostridium acetobutyricum ATCC 824, with xylose as the carbon source.
View Article and Find Full Text PDFUnlabelled: Multifunctional constructs providing a proper environment for adhesion and growth of selected cell types are needed for most tissue engineering and regenerative medicine applications. In this context, vinylsulfone (VS)-modified dextran was proposed as a matrix featuring low-fouling properties as well as multiple versatile moieties. The displayed VS groups could indeed react with thiol, amine or hydroxyl groups, be it for surface grafting, crosslinking or subsequent tethering of biomolecules.
View Article and Find Full Text PDFIn recent years, dynamic metabolic flux analysis (DMFA) has been developed in order to evaluate the dynamic evolution of the metabolic fluxes. Most of the proposed approaches are dedicated to exactly determined or overdetermined systems. When an underdetermined system is considered, the literature suggests the use of dynamic flux balance analysis (DFBA).
View Article and Find Full Text PDFNumerous strategies have been proposed to decorate biomaterials with growth factors (GFs) for tissue engineering applications; their practicability as clinical tools, however, remains uncertain. We previously presented two complementary amphipathic peptides, namely, E5 and K5, which could be utilized as tags to direct GF capture onto organic materials via E5/K5 coiled-coil interactions. We here investigated their potential as mediators of GF physical adsorption.
View Article and Find Full Text PDF