Sensing light's polarization and wavefront direction enables surface curvature assessment, material identification, shadow differentiation, and improved image quality in turbid environments. Traditional polarization cameras utilize multiple sensor measurements per pixel and polarization-filtering optics, which result in reduced image resolution. We propose a nanophotonic pipeline that enables compressive sensing and reduces the sampling requirements with a low-refractive-index, self-assembled optical encoder.
View Article and Find Full Text PDFIn recent years, wave-based analog computing has been at the center of attention for providing ultra-fast and power-efficient signal processing enabled by wave propagation through artificially engineered structures. Building on these structures, various proposals have been put forward for performing computations with waves. Most of these proposals have been aimed at linear operations, such as vector-matrix multiplications.
View Article and Find Full Text PDFPerforming analog computations with metastructures is an emerging wave-based paradigm for solving mathematical problems. For such devices, one major challenge is their reconfigurability, especially without the need for a priori mathematical computations or computationally-intensive optimization. Their equation-solving capabilities are applied only to matrices with special spectral (eigenvalue) distribution.
View Article and Find Full Text PDFManipulation of the radiation efficiency and pattern of quantum emitters by engineering the electromagnetic properties of the surrounding medium is crucial for designing various light sources. Here, we theoretically demonstrate the possibility of designing a compact and tunable resonator using a pair of photonically doped epsilon-near-zero (ENZ) slabs that are separated by a deeply subwavelength air gap. Such resonators are shown to be capable of switching between completely transparent and opaque states, for a TM-polarized normally incident plane wave, by slightly changing the permittivity of the dielectric dopants.
View Article and Find Full Text PDF