The new ligand 3,3'-bis(((2-(3,6,9-triaza-1(2,6)-pyridinacyclodecaphane-6-yl)ethyl)amino)methyl)-[1,1'-biphenyl]-2,2'-diol (L) has been synthesized and characterized. It contains two pyridinacyclophane macrocycles spaced by a 2,2'-biphenol moiety. The acid-base behaviour of L as well as its binding properties towards Zn ion have been investigated.
View Article and Find Full Text PDFAntibiotic resistance is now a first-order health problem, which makes the development of new families of antimicrobials imperative. These compounds should ideally be inexpensive, readily available, highly active, and non-toxic. Here, we present the results of our investigation regarding the antimicrobial activity of a series of natural and synthetic polyamines with different architectures (linear, tripodal, and macrocyclic) and their derivatives with the oxygen-containing aromatic functional groups 1,3-benzodioxol, ortho/para phenol, or 2,3-dihydrobenzofuran.
View Article and Find Full Text PDFA novel tri-pyrene polyamine () bearing net five positive charges at biorelevant conditions revealed strong intramolecular interactions in aqueous medium between pyrenes, characterised by pronounced excimer fluorescence. A novel compound revealed strong binding to ds-DNA and ds-RNA, along with pronounced thermal stabilisation of DNA/RNA and extensive changes in DNA/RNA structure, as evidenced by circular dichroism. New dye caused pronounced ds-DNA or ds-RNA condensation, which was attributed to a combination of electrostatic interactions between 5+ charge of dye and negatively charged polynucleotide backbone, accompanied by aromatic and hydrophobic interactions of pyrenes within polynucleotide grooves.
View Article and Find Full Text PDFHighly resistant bacteria producing metallo-β-lactamases (MBLs) to evade β-lactam antibiotics, constitute a major cause of life-threatening infections world-wide. MBLs exert their hydrolytic action via Zn cations in their active center. Presently, there are no approved drugs to target MBLs and combat the associated antimicrobial resistance (AMR).
View Article and Find Full Text PDFThe ability of mononuclear first-row transition metal complexes as dynamic molecular systems to perform selective functions under the control of an external stimulus that appropriately tunes their properties may greatly impact several domains of molecular nanoscience and nanotechnology. This study focuses on two mononuclear octahedral cobalt(ii) complexes of formula {[Co(HL)][Co(HL)L]}(ClO)·9HO (1) and [CoL]·5HO (2) [HL = 4'-(4-carboxyphenyl)-2,2':6',2''-terpyridine], isolated as a mixed protonated/hemiprotonated cationic salt or a deprotonated neutral species. This pair of pH isomers constitutes a remarkable example of a dynamic molecular system exhibiting reversible changes in luminescence, redox, and magnetic (spin crossover and spin dynamics) properties as a result of ligand deprotonation, either in solution or solid state.
View Article and Find Full Text PDFThe synthesis, acid-base behaviour and anion recognition of neurotransmitters (dopamine, tyramine and serotonin) in aqueous solution of different aza-scorpiand ligands functionalized with hydroxyphenyl and phenyl moieties (L1-L3 and L4, respectively) have been studied by potentiometry, NMR, UV-Vis and fluorescence spectroscopy and isothermal titration calorimetry (ITC). The analysis of the potentiometric results shows the selective recognition of serotonin at physiological pH ( = 8.64 × 10) by L1.
View Article and Find Full Text PDFGreen catalysts with excellent performance in Cu-free Sonogashira coupling reactions can be prepared by the supramolecular decoration of graphene surfaces with Pd(II) complexes. Here we report the synthesis, characterization, and catalytic properties of new catalysts obtained by the surface decoration of multiwalled carbon nanotubes (MWCNTs), graphene (G), and graphene nanoplatelets (GNPTs) with Pd(II) complexes of tetraaza-macrocyclic ligands bearing one or two anchor functionalities. The decoration of these carbon surfaces takes place under environmentally friendly conditions (water, room temperature, aerobic) in two steps: (i) π-π stacking attachment of the ligand via electron-poor anchor group 6-amino-3,4-dihydro-3-methyl-5-nitroso-4-oxo-pyrimidine and (ii) Pd(II) coordination from PdCl.
View Article and Find Full Text PDFNucleic acids are essential biomolecules in living systems and represent one of the main targets of chemists, biophysics, biologists, and nanotechnologists. New small molecules are continuously developed to target the duplex (ds) structure of DNA and, most recently, RNA to be used as therapeutics and/or biological tools. Stimuli-triggered systems can promote and hamper the interaction to biomolecules through external stimuli such as light and metal coordination.
View Article and Find Full Text PDFA scorpionate Zn complex, constituted by a macrocyclic pyridinophane core attached to a pendant arm containing a fluorescent pyridyl-oxadiazole-phenyl unit (PyPD), has been shown to selectively recognize chloride anions, giving rise to changes in fluorescence emission that are clearly visible under a 365 nm UV lamp. This recognition event has been studied by means of absorption, fluorescence, and NMR spectroscopy, and it involves the intramolecular displacement of the PyPD unit by chloride anions. Moreover, since the chromophore is not removed from the system after the recognition event, the fluorescence can readily be restored by elimination of the bound chloride anion.
View Article and Find Full Text PDFA ligand comprised of a macrocyclic pyridinophane core having a pendant arm containing a secondary amine group linked through a methylene spacer to a pyridyl-oxadiazole-phenyl (PyPD) fluorescent system has been prepared (L). The crystal structures of [ZnL](ClO) and [CuL](ClO) show that M is coordinated to all the nitrogen atoms of the macrocyclic core, the secondary amine of the pendant arm and the nitrogen atom of the pyridine group of the fluorescent moiety, the latter bond being clearly weaker than the one with the pyridine of the macrocycle. Solution studies showed the formation of a highly stable Cu complex with 1 : 1 stoichiometry, whereas with Zn least stable complexes were formed and, given the right conditions, a [ZnL] species was also detected, but it was not possible to isolate this species in the solid state.
View Article and Find Full Text PDFA new G-(HL)-Pd heterogeneous catalyst has been prepared via a self-assembly process consisting in the spontaneous adsorption, in water at room temperature, of a macrocyclic HL ligand on graphene (G) (G + HL = G-(HL)), followed by decoration of the macrocycle with Pd ions (G-(HL) + Pd = G-(HL)-Pd) under the same mild conditions. This supramolecular approach is a sustainable (green) procedure that preserves the special characteristics of graphene and furnishes an efficient catalyst for the Cu-free Sonogashira cross coupling reaction between iodobenzene and phenylacetylene. Indeed, G-(HL)-Pd shows an excellent conversion (90%) of reactants into diphenylacetylene under mild conditions (50 °C, water, aerobic atmosphere, 14 h).
View Article and Find Full Text PDFWe report here the remarkable catalytic efficiency observed for two Pd(II) azamacrocyclic complexes supported on multiwalled carbon nanotubes (MWCNTs) toward oxygen reduction reactions. Beyond a main (>90%) 4e process and an onset potential close to or better than those of commercial Pt electrodes, the MWCNTs functionalization strategy, aimed at chemically defined Pd(II)-based catalytic centers, allowed the half-cell to exceed the proton-exchange-membrane fuel-cell reference/target mass activity efficiency set by the U.S.
View Article and Find Full Text PDFA new series of triphenylamine-based ligands with one (TPA1PY), two (TPA2PY) or three pendant aza-macrocycle(s) (TPA3PY) has been synthesised and studied by means of pH-metric titrations, UV/Vis spectroscopy and fluorescence experiments. The affinity of these ligands for G-quadruplex (G4) DNA and the selectivity they show for G4s over duplex DNA were investigated by Förster resonance energy transfer (FRET) melting assays, fluorimetric titrations and circular dichroism spectroscopy. Interestingly, the interactions of the bi- and especially the tri-branched ligands with G4s lead to a very intense redshifted fluorescence emission band that may be associated with intermolecular aggregation between the molecule and DNA.
View Article and Find Full Text PDFTwo polytopic aza-scorpiand-like ligands, 6-[7-(diaminoethyl)-3,7-diazaheptyl]-3,6,9-triaza-1-(2,6-pyridina)cyclodecaphane (L1) and 6-[6'-[3,6,9-triaza-1-(2,6-pyridina)cyclodecaphan-6-yl]-3-azahexyl]-3,6,9-triaza-1-(2,6-pyridina)cyclodecaphane (L2), have been synthesized. The acid-base behavior and Cu, Zn, and Cu/Zn mixed coordination have been analyzed by potentiometry, cyclic voltammetry, and UV-vis spectroscopy. The resolution of the crystal structures of [CuL2Cl](ClO)·1.
View Article and Find Full Text PDFThe enantioselectivity of β-cyclodextrin (β-CD) towards L- and D--acetyltryptophan (NAcTrp) has been studied in aqueous solution and the crystalline state. NMR studies in solution show that β-CD forms complexes of very similar but not identical geometry with both L- and D-NAcTrp and exhibits stronger binding with L-NAcTrp. In the crystalline state, only β-CD-L-NAcTrp crystallizes readily from aqueous solutions as a dimeric complex (two hosts enclosing two guest molecules).
View Article and Find Full Text PDFThe interaction of a polyazacyclophane ligand having an ethylamine pendant arm functionalized with an anthryl group (L), with the single-stranded polynucleotides polyA, polyG, polyU, and polyC as well as with the double-stranded polynucleotides polyA-polyU, poly(dAT) , and poly(dGC) has been followed by UV/Vis titration, steady state fluorescence spectroscopy, and thermal denaturation measurements. In the case of the single-stranded polynucleotides, the UV/Vis and fluorescence titrations permit to distinguish between sequences containing purine and pyrimidine bases. For the double-stranded polynucleotides the UV/Vis measurements show for all of them hypochromicity and bathochromic shifts.
View Article and Find Full Text PDFThe complexing ability of copper(II) in solution by the ligand N,N'-2,6-pyridinebis(oxamic acid) (H4mpyba, H4L) was determined through potentiometric and UV-vis spectroscopy at 25 °C and 0.15 M NaCl. The logarithms of the equilibrium constants for its copper(II) complexes according to the eqs 2H2L + 2Cu ⇆ [Cu2(H2L)2], 2H2L + 2Cu ⇆ [Cu2(H2L) (HL)] + H, 2H2L + 2Cu ⇆ [Cu2(HL)2] + 2H, 2H2L + 2Cu ⇆ [Cu2(HL)(L)] + 3H, and 2H2L + 2Cu ⇆ [Cu2L2] + 4H were 12.
View Article and Find Full Text PDFThe detection of nucleotides is of crucial importance because they are the basic building blocks of nucleic acids. Scorpiand-based polyamine receptors functionalized with pyridine or anthracene units are able to form stable complexes with nucleotides in water, based on coulombic, π-π stacking, and hydrogen-bonding interactions. This behavior has been rationalized by means of an exploration with NMR spectroscopy and DFT calculations.
View Article and Find Full Text PDFDNA interaction with scorpiand azamacrocycles has been achieved through modulation of their binding affinities. Studies performed with different experimental techniques provided evidence that pH or metal-driven molecular reorganizations of these ligands regulate their ability to interact with calf thymus DNA (ctDNA) through an intercalative mode. Interestingly enough, metal-driven molecular reorganizations serve to increase or decrease the biological activities of these compounds significantly.
View Article and Find Full Text PDFMn(II) complexes of scorpiand-type azamacrocycles constituted by a tretrazapyridinophane core appended with an ethylamino tail including 2- or 4-quinoline functionalities show very appealing in vitro SOD activity. The observed behaviour is related to structural and electrochemical parameters.
View Article and Find Full Text PDF