and methicillin-resistant () synergize in cross-kingdom biofilms to increase the risk of mortality and morbidity due to high resistance to immune and antimicrobial defenses. Biomedical devices and implants made with titanium are vulnerable to infections that may demand their surgical removal from the infected sites. Graphene nanocoating (GN) has promising anti-adhesive properties against .
View Article and Find Full Text PDFBackground And Aims: The SYNTAX score is clinically validated to stratify number of lesions and pattern of CAD. A better understanding of the underlying molecular mechanisms influencing the pattern and complexity of coronary arteries lesions among CAD patients is needed.
Methods: Human arterial biopsies from 49 patients (16 low-SYNTAX-score (LSS, <23), 16 intermediate-SYNTAX-score (ISS, 23 to 32) and 17 high-SYNTAX-score (HSS, >32)) were evaluated using Affymetrix GeneChip® Human Genome U133 Plus 2.
Motivation: Gradual population-level changes in tissues can be driven by stochastic plasticity, meaning rare stochastic transitions of single-cell phenotype. Quantifying the rates of these stochastic transitions requires time-intensive experiments, and analysis is generally confounded by simultaneous bidirectional transitions and asymmetric proliferation kinetics. To quantify cellular plasticity, we developed Transcompp (Transition Rate ANalysis of Single Cells to Observe and Measure Phenotypic Plasticity), a Markov modeling algorithm that uses optimization and resampling to compute best-fit rates and statistical intervals for stochastic cell-state transitions.
View Article and Find Full Text PDF