Antarctic coastal waters are home to several established or proposed Marine Protected Areas (MPAs) supporting exceptional biodiversity. Despite being threatened by anthropogenic climate change, uncertainties remain surrounding the future ocean acidification (OA) of these waters. Here we present 21st-century projections of OA in Antarctic MPAs under four emission scenarios using a high-resolution ocean-sea ice-biogeochemistry model with realistic ice-shelf geometry.
View Article and Find Full Text PDFAntarctic Bottom Water formation, such as in the Weddell Sea, is an efficient vector for carbon sequestration on time scales of centuries. Possible changes in carbon sequestration under changing environmental conditions are unquantified to date, mainly due to difficulties in simulating the relevant processes on high-latitude continental shelves. Here, we use a model setup including both ice-shelf cavities and oceanic carbon cycling and demonstrate that by 2100, deep-ocean carbon accumulation in the southern Weddell Sea is abruptly attenuated to only 40% of the 1990s rate in a high-emission scenario, while the rate in the 2050s and 2080s is still 2.
View Article and Find Full Text PDFThe ocean moderates the world's climate through absorption of heat and carbon, but how much carbon the ocean will continue to absorb remains unknown. The North Atlantic Ocean west (Baffin Bay/Labrador Sea) and east (Fram Strait/Greenland Sea) of Greenland features the most intense absorption of anthropogenic carbon globally; the biological carbon pump (BCP) contributes substantially. As Arctic sea-ice melts, the BCP changes, impacting global climate and other critical ocean attributes (e.
View Article and Find Full Text PDFShelf seas play an important role in the global carbon cycle, absorbing atmospheric carbon dioxide (CO) and exporting carbon (C) to the open ocean and sediments. The magnitude of these processes is poorly constrained, because observations are typically interpolated over multiple years. Here, we used 298500 observations of CO fugacity (fCO) from a single year (2015), to estimate the net influx of atmospheric CO as 26.
View Article and Find Full Text PDFGlobal climate is critically sensitive to physical and biogeochemical dynamics in the subpolar Southern Ocean, since it is here that deep, carbon-rich layers of the world ocean outcrop and exchange carbon with the atmosphere. Here, we present evidence that the conventional framework for the subpolar Southern Ocean carbon cycle, which attributes a dominant role to the vertical overturning circulation and shelf-sea processes, fundamentally misrepresents the drivers of regional carbon uptake. Observations in the Weddell Gyre-a key representative region of the subpolar Southern Ocean-show that the rate of carbon uptake is set by an interplay between the Gyre's horizontal circulation and the remineralization at mid-depths of organic carbon sourced from biological production in the central gyre.
View Article and Find Full Text PDFWe quantify the oceanic sink for anthropogenic carbon dioxide (CO) over the period 1994 to 2007 by using observations from the global repeat hydrography program and contrasting them to observations from the 1990s. Using a linear regression-based method, we find a global increase in the anthropogenic CO inventory of 34 ± 4 petagrams of carbon (Pg C) between 1994 and 2007. This is equivalent to an average uptake rate of 2.
View Article and Find Full Text PDFSeveral studies have suggested that the carbon sink in the Southern Ocean-the ocean's strongest region for the uptake of anthropogenic CO2 -has weakened in recent decades. We demonstrated, on the basis of multidecadal analyses of surface ocean CO2 observations, that this weakening trend stopped around 2002, and by 2012, the Southern Ocean had regained its expected strength based on the growth of atmospheric CO2. All three Southern Ocean sectors have contributed to this reinvigoration of the carbon sink, yet differences in the processes between sectors exist, related to a tendency toward a zonally more asymmetric atmospheric circulation.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
July 2014
Data are presented for total carbon dioxide (TCO2), oxygen and nutrients from 14 cruises covering two repeat sections across the Weddell Gyre, from 1973 to 2010. Assessments of the rate of increase in anthropogenic CO2 (Cant) are made at three locations. Along the Prime Meridian, TCO2 is observed to steadily increase in the bottom water.
View Article and Find Full Text PDF