The 2013-2016 Ebola outbreak highlighted the limited treatment options and lack of rapid response strategies for emerging pathogen outbreaks. Here, we propose an efficient development cycle using glycoengineered Pichia pastoris to produce monoclonal antibody cocktails against pathogens. To enable rapid genetic engineering of P.
View Article and Find Full Text PDFCRISPR-Cas9 based knockout strategies are increasingly used to analyze gene function. However, redundancies and overlapping functions in biological signaling pathways can call for generating multi-gene knockout cells, which remains a relatively laborious process. Here we detail the application of multi-color LentiCRISPR vectors to simultaneously generate single and multiple knockouts in human cells.
View Article and Find Full Text PDFChronic inflammatory diseases are influenced by dysregulation of cytokines. Among them, granulocyte macrophage colony stimulating factor (GM-CSF) is crucial for the pathogenic function of T cells in preclinical models of autoimmunity. To study the impact of dysregulated GM-CSF expression in vivo, we generated a transgenic mouse line allowing the induction of GM-CSF expression in mature, peripheral helper T (Th) cells.
View Article and Find Full Text PDFArsenic contamination of groundwater is posing a serious challenge to drinking water supplies on a global scale. In India and Bangladesh, arsenic has caused the most serious public health issue in the world for nearly two decades. The aim of this work was to study an arsenic removal system based on reverse osmosis at pilot scale treating two different water sources from two different locations in the State of Bihar, India.
View Article and Find Full Text PDFAlthough its involvement in prion replication and neurotoxicity during transmissible spongiform encephalopathies is undisputed, the physiological role of the cellular prion protein (PrP(C)) remains enigmatic. A plethora of functions have been ascribed to PrP(C) based on phenotypes of Prnp(-/-) mice. However, all currently available Prnp(-/-) lines were generated in embryonic stem cells from the 129 strain of the laboratory mouse and mostly crossed to non-129 strains.
View Article and Find Full Text PDFThe orchestrated action of genes controls complex biological phenotypes, yet the systematic discovery of gene and drug combinations that modulate these phenotypes in human cells is labor intensive and challenging to scale. Here, we created a platform for the massively parallel screening of barcoded combinatorial gene perturbations in human cells and translated these hits into effective drug combinations. This technology leverages the simplicity of the CRISPR-Cas9 system for multiplexed targeting of specific genomic loci and the versatility of combinatorial genetics en masse (CombiGEM) to rapidly assemble barcoded combinatorial genetic libraries that can be tracked with high-throughput sequencing.
View Article and Find Full Text PDFTransgenic mice carrying site-specific genome modifications (knockout, knock-in) are of vital importance for dissecting complex biological systems as well as for modeling human diseases and testing therapeutic strategies. Recent advances in the use of designer nucleases such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 system for site-specific genome engineering open the possibility to perform rapid targeted genome modification in virtually any laboratory species without the need to rely on embryonic stem (ES) cell technology. A genome editing experiment typically starts with identification of designer nuclease target sites within a gene of interest followed by construction of custom DNA-binding domains to direct nuclease activity to the investigator-defined genomic locus.
View Article and Find Full Text PDFConditional mutagenesis using Cre recombinase expressed from tissue specific promoters facilitates analyses of gene function and cell lineage tracing. Here, we describe two novel dual-promoter-driven conditional mutagenesis systems designed for greater accuracy and optimal efficiency of recombination. Co-Driver employs a recombinase cascade of Dre and Dre-respondent Cre, which processes loxP-flanked alleles only when both recombinases are expressed in a predetermined temporal sequence.
View Article and Find Full Text PDFZinc finger nucleases (ZFNs) enable precise genome modification in a variety of organisms and cell types. Commercial ZFNs were reported to enhance gene targeting directly in mouse zygotes, whereas similar approaches using publicly available resources have not yet been described. Here we report precise targeted mutagenesis of the mouse genome using Oligomerized Pool Engineering (OPEN) ZFNs.
View Article and Find Full Text PDFThe differentiation of follicular dendritic cells (FDC) is essential to the remarkable microanatomic plasticity of lymphoid follicles. Here we show that FDC arise from ubiquitous perivascular precursors (preFDC) expressing platelet-derived growth factor receptor β (PDGFRβ). PDGFRβ-Cre-driven reporter gene recombination resulted in FDC labeling, whereas conditional ablation of PDGFRβ(+)-derived cells abolished FDC, indicating that FDC originate from PDGFRβ(+) cells.
View Article and Find Full Text PDF