Babassu (Atallea sp.), a native palm tree from South America's Amazon produces bio-oil and biochar with significant potential for industrial applications. Babassu oil as a bio-based plasticizer is reported here for the first time to replace petrochemical alternatives in the production of conductive filaments for additive manufacturing purposes.
View Article and Find Full Text PDFThe development of a portable analytical procedure is described for rapid sequential detection and quantification of the explosives 2,4,6-trinitrotoluene (TNT) and cyclotrimethylenetrinitramine (RDX) in forensic samples using a graphite sheet (GS). A single GS platform works as a collector of explosive residues and detector after its assembly into a 3D-printed cell. The detection strategy is based on cyclic square-wave stripping voltammetry.
View Article and Find Full Text PDFThis study describes the development of a new electrochemical paper-based analytical device (ePAD) on alumina sandpaper substrate through a pencil-drawing process for square wave voltammetry measurements of midazolam maleate used as a "date rape drug" in beverages. The proposed ePAD was assembled on a reusable 3D printed holder to delimit its geometric area and ensure better robustness. The ePAD was characterized by scanning electron microscopy, cyclic voltammetry, electrochemical impedance spectroscopy and Raman spectroscopy.
View Article and Find Full Text PDFCocaine is probably one of the most trafficked illicit drugs in the world. For this reason, police forces require fast, selective, and sensitive methods for cocaine detection at crime scenes. Taking benefit of additive manufacturing, we demonstrate that 3D-printed graphene-polylactic acid (G-PLA) electrodes using the affordable fused deposition modelling technique can identify and quantify cocaine in seized drugs.
View Article and Find Full Text PDF3D-printing is an emerging technique that enables the fast prototyping of multiple-use devices. Herein we report the fabrication of a 3D-printed graphene/polylactic acid (G-PLA) conductive electrode that works as a sampler and a voltammetric sensor of metals in gunshot residue (GSR) using a commercially-available G/-PLA filament. The 3D-printed surface was used as swab to collect GSR and next submitted to a square-wave voltammetric scan for the simultaneous detection of Pb and Sb.
View Article and Find Full Text PDFMidazolam (MID) is a sedative drug which can be added in beverage samples as drug-facilitated-sexual assault (date rape drug). This type of drug has short half-life in biological fluids (not detectable) which often prevents the correlation between drug abuse and crime. In this work, we described a simple and low-cost method for fast screening and selective determination of MID in beverage samples (vodka, whiskey and red wine).
View Article and Find Full Text PDFThis work presents the use of a graphite sheet (graphite papers) as a new platform for the collection and sensing of explosive residues. This material offers a lightweight, highly conductive, flexible platform that can be cut in several ways, enabling for the collection of explosive residues at the place of interest, without any further sample preparation steps. As a proof-of-concept, the device was utilised for the collection and electrochemical sensing of 2,4,6-trinitrotoluene (TNT) residues.
View Article and Find Full Text PDFThis work presents the highly-sensitive detection of 2,4,6-trinitrotoluene (TNT) on reduced graphene oxide/multi-walled carbon nanotube (rGO/MWCNT) nanocomposite sensor. The formation of a thin film of this nanocomposite occurred at the cyclohexane/water immiscible interface of a mixture of MWCNT and rGO in the biphasic solution. The film was transferred to a boron-doped diamond (BDD) electrode for the square-wave voltammetric detection of TNT, which presented improved analytical characteristics in comparison with bare BDD and after modification with precursors.
View Article and Find Full Text PDFThis current review article focuses on recent contributions to on-site forensic investigations. Portable and potentially portable methods are presented and critically discussed about (bio)chemical trace analysis and studies performed outside the controlled laboratory environment to rapidly help in crime scene inquiries or forensic intelligence purposes. A wide range of approaches including electrochemical sensors, microchip electrophoresis, ambient ionization on portable mass spectrometers, handheld Raman and NIR instruments as well as and point-of-need devices, like paper-based platforms, for in-field analysis of latent evidences, controlled substances, drug screening, hazards, and others to assist in law enforcements and solving crime more efficiently are highlighted.
View Article and Find Full Text PDFThis study describes the development of a new analytical method for the separation and detection of cocaine (COC) and its adulterants, or cutting agents, using microchip electrophoresis (ME) devices coupled with capacitively coupled contactless conductivity detection (C D). All the experiments were carried out using a glass commercial ME device containing two pairs of integrated sensing electrodes. The running buffer composed of 20 mmol/L amino-2-(hydroxymethyl) propane-1,3-diol and 10 mmol/L 3,4-dimethoxycinnamic acid provided the best separation conditions for COC and its adulterants with baseline resolution (R > 1.
View Article and Find Full Text PDFWe report the development of a simple, portable, low-cost, high-throughput visual colorimetric paper-based analytical device for the detection of procaine in seized cocaine samples. The interference of most common cutting agents found in cocaine samples was verified, and a novel electrochemical approach was used for sample pretreatment in order to increase the selectivity. Under the optimized experimental conditions, a linear analytical curve was obtained for procaine concentrations ranging from 5 to 60 μmol L(-1), with a detection limit of 0.
View Article and Find Full Text PDFAqueous solutions containing the commercial azo dye Reactive Orange 122 (RO122) were ozonated in acid and alkaline conditions. Ozone was electrochemically generated using a laboratory-made electrochemical reactor and applied using semi-batch conditions and a column bubble reactor. A constant ozone application rate of 0.
View Article and Find Full Text PDF