The formation of microparticles () of biocompatible and biodegradable hydrogels such as polyethylene glycol diacrylate (PEGDA) utilizing microfluidic devices is an attractive option for entrapment and encapsulation of active principles and microorganisms. Our research group has presented in previous studies a formulation to produce these hydrogels with adequate physical and mechanical characteristics for their use in the formation of . In this work, hydrogel are formed based on PEGDA using a microfluidic device with a T-junction design, and the become hydrogel through a system of photopolymerization.
View Article and Find Full Text PDFMolecules
May 2023
YMnO is a P-type semiconductor with a perovskite-type structure (ABO). It presents two crystalline systems: rhombohedral and hexagonal, the latter being the most stable and studied. In the hexagonal system, Mn ions are coordinated by five oxygen ions forming a trigonal bipyramid, and the Y ions are coordinated by five oxygen ions.
View Article and Find Full Text PDFIn this study, the impact of pH on the production of ZnO nanostructured thin films using chemical bath deposition was investigated for the purpose of enhancing the efficiency of solar cells. The ZnO films were directly deposited onto glass substrates at various pH levels during the synthesis process. The results indicate that the crystallinity and overall quality of the material were not affected by the pH solution, as observed through X-ray diffraction patterns.
View Article and Find Full Text PDFIn this paper, we present a hybrid semiconductor structure for biosensing applications that features the co-integration of nanoelectromechanical systems with the well-known metal oxide semiconductor technology. The proposed structure features an MOSFET as a readout element, and a doubly clamped beam that is isolated from the substrate by a thin air gap, as well as by a tunnel oxide layer. The beam structure is functionalised by a thin layer of biotargets, and the main aim is to detect a particular set of biomolecules, such as enzymes, bacteria, viruses, and DNA/RNA chains, among others.
View Article and Find Full Text PDFA stoichiometric model for Saccharomyces cerevisiae is reconstructed to analyze the continuous fermentation process of agave juice in Tequila production. The metabolic model contains 94 metabolites and 117 biochemical reactions. From the above set of reactions, 93 of them are linked to internal biochemical reactions and 24 are related to transport fluxes between the medium and the cell.
View Article and Find Full Text PDFMicromachines (Basel)
March 2021
Photopolymerized microparticles are made of biocompatible hydrogels like Polyethylene Glycol Diacrylate (PEGDA) by using microfluidic devices are a good option for encapsulation, transport and retention of biological or toxic agents. Due to the different applications of these microparticles, it is important to investigate the formulation and the mechanical properties of the material of which they are made of. Therefore, in the present study, mechanical tests were carried out to determine the swelling, drying, soluble fraction, compression, cross-linking density (Mc) and mesh size (ξ) properties of different hydrogel formulations.
View Article and Find Full Text PDFIn this work, a dual refractive index and temperature sensor based on an interferometric system and on the empirical mode decomposition (EMD) algorithm is presented. Here, it is shown that the EMD provides a comprehensive way to analyze and decompose complex reflection spectra produced by an interferometric filter build at the tip of an optical fiber. By applying the EMD algorithm, the spectrum can be decomposed into a set of intrinsic mode functions (IMF) from which the temperature and the refractive index can be easily extracted.
View Article and Find Full Text PDF