Radiofrequency thermal ablation (RFTA) induces a high-temperature field in a biological tissue having steep spatial (up to 6°C∕mm) and temporal (up to 1°C∕s) gradients. Applied in cancer care, RFTA produces a localized heating, cytotoxic for tumor cells, and is able to treat tumors with sizes up to 3 to 5 cm in diameter. The online measurement of temperature distribution at the RFTA point of care has been previously carried out with miniature thermocouples and optical fiber sensors, which exhibit problems of size, alteration of RFTA pattern, hysteresis, and sensor density worse than 1 sensor∕cm.
View Article and Find Full Text PDFA linearly chirped fiber Bragg grating (LCFBG) has been used as a temperature sensor for online monitoring of radiofrequency thermal ablation (RFTA). The LCFBG acts as a distributed sensor, with spatial resolution of 75 μm. A white-light setup that records the LCFBG spectrum estimates the temperature profile in real time.
View Article and Find Full Text PDFWe present a biocompatible, all-glass, 0.2 mm diameter, fiber-optic probe that combines an extrinsic Fabry-Perot interferometry and a proximal fiber Bragg grating sensor; the probe enables dual pressure and temperature measurement on an active 4 mm length, with 40 Pa and 0.2°C nominal accuracy.
View Article and Find Full Text PDFObjective: Our objective was to investigate whether increases in atmospheric or local tissue pressure would affect the outcome of radiofrequency ablation procedures and the size of the created thermal lesions.
Materials And Methods: Thermal lesions were produced in specimens of explanted bovine liver inside a hyperbaric chamber at 101 (atmospheric), 141, 202, 273, and 364 kPa using radiofrequency power settings of 20, 30, 40, and 50 W. In subsequent in vivo experiments, thermal lesions were produced in the livers of anesthetized pigs with or without occlusion of the hepatic vein draining the ablation site.