This work describes the main advances carried out in the field of corrosion protection using layered double hydroxides (LDH), both as additive/pigment-based systems in organic coatings and as conversion films/pre-treatments. In the context of the research topic "Celebrating 20 years of CICECO", the main works reported herein are based on SECOP's group (CICECO) main advances over the years. More specifically, this review describes structure and properties of LDH, delving into the corrosion field with description of pioneering works, use of LDH as additives to organic coatings, conversion layers, application in reinforced concrete and corrosion detection, and environmental impact of these materials.
View Article and Find Full Text PDFReclaiming water for cooling systems in oil refineries has been strongly encouraged over the past years for decreasing the large consumption of fresh water, thus contributing to the efficient use of this valuable resource. In a recent study [Journal of Environmental Management 261 (2020) 110229], some of the authors studied the retention of phenols in refinery wastewater through reverse osmosis (RO) and found rejections of up to 98% of phenols and 99% of both chemical oxygen demand (COD) and total organic carbon (TOC). The permeates complied with the quality standards for make-up water in cooling processes.
View Article and Find Full Text PDFKinetic parameters for three anion exchange reactions - Zn-LDH-NO→ Zn-LDH-Cl, Zn-LDH-NO→ Zn-LDH-SO and Zn-LDH-NO→ Zn-LDH-VO- were obtained by in situ synchrotron study. The first and the second ones are two-stage reactions; the first stage is characterized by the two-dimensional diffusion-controlled reaction following deceleratory nucleation and the second stage is a one-dimensional diffusion-controlled reaction also with a decelerator nucleation effect. In the case of exchange NO→ Cl host anions are completely released, while in the case of NO→ SO the reaction ends without complete release of nitrate anions.
View Article and Find Full Text PDFSingle-phase magnesium-aluminium layered double hydroxide (LDH) intercalated with dihydrogen phosphate was successfully produced by hydration of nanopowder of the respective mixed metal oxide (MMO) obtained using sol-gel based method followed by a two-step anion exchange hydroxide-to-chloride and chloride-to-phosphate. The MMO with the metal cation ratio of Mg/Al = 2:1 was prepared using the aqueous sol-gel method. Processes of the parent MgAl-OH LDH formation and the successive anion-exchanges, ОН → Cl and Cl → HPO, were considerably accelerated via the application of high-power (1.
View Article and Find Full Text PDFAn approach for the synthesis of ZnAl-NO3 LDH conversion coatings on zinc in an aqueous acidic Al(NO3)3/NaNO3 solution is demonstrated for the first time. The growth mechanism has been investigated using time resolved structural, microstructural and analytical methods. A LDH growth model involving both electrochemical and chemical processes is suggested.
View Article and Find Full Text PDFCarbon is used as a reinforcing phase in carbon-fiber reinforced polymer composites employed in aeronautical and other technological applications. Under polarization in aqueous media, which can occur on galvanic coupling of carbon-fiber reinforced polymers (CFRP) with metals in multi-material structures, degradation of the composite occurs. These degradative processes are intimately linked with the electrically conductive nature and surface chemistry of carbon.
View Article and Find Full Text PDFIn the frame of the current work, it was shown that plasma electrolytic oxidation (PEO) treatment can be applied on top of phosphoric sulfuric acid (PSA) anodized aluminum alloy AA2024. Being hard and well-adherent to the substrate, PEO layers improve both corrosion and wear resistance of the material. To facilitate PEO formation and achieve a dense layer, the systematic analysis of PEO layer formation on the preliminary PSA anodized layer was performed in this work.
View Article and Find Full Text PDFDue to their unique electronic and optical features, gold nanoparticles (AuNP) have received a great deal of attention for application in different fields such as catalysis, electronics, and biomedicine. The large-volume manufacturing predicted for future decades and the inevitable release of these substances into the environment necessitated an assessment of potential adverse human and ecological risks due to exposure to AuNP. Accordingly, this study aimed to examine the acute and developmental toxicity attributed to a commercial suspension of Au nanorods stabilized with cetyltrimethylammonium bromide (CTAB-AuNR) using early embryonic stages of zebrafish (Danio rerio), a well-established model in ecotoxicology.
View Article and Find Full Text PDFEnergy-transfer reactions are the key for living open systems, biological chemical networking, and the development of life-inspired nanoscale machineries. It is a challenge to find simple reliable synthetic chemical networks providing a localization of the time-dependent flux of matter. In this paper, we look to photocatalytic reaction on TiO from different angles, focusing on proton generation and introducing a reliable, minimal-reagent-consuming, stable inorganic light-promoted proton pump.
View Article and Find Full Text PDFZinc-aluminum layered double hydroxides with nitrate intercalated (Zn(n)Al-NO3, n=Zn/Al) is an intermediate material for the intercalation of different functional molecules used in a wide range of industrial applications. The synthesis of Zn(2)Al-NO3 was investigated considering the time and temperature of hydrothermal treatment. By examining the crystallite size in two different directions, hydrodynamic particle size, morphology, crystal structure and chemical species in solution, it was possible to understand the crystallization and dissolution processes involved in the mechanisms of crystallite and particle growth.
View Article and Find Full Text PDFUnlabelled: Medical device-associated infections are a multi-billion dollar burden for the worldwide healthcare systems. The modification of medical devices with non-leaching coatings capable of killing microorganisms on contact is one of the strategies being investigated to prevent microorganism colonization. Here we developed a robust antimicrobial coating based on the chemical immobilization of the antimicrobial peptide (AMP), cecropin-melittin (CM), on gold nanoparticles coated surfaces.
View Article and Find Full Text PDFThe photochemical degradation of 2-mercaptobenzothiazole (MBT) and 1,2,3-benzotriazole (BTA) inhibitors was studied in the present work in aqueous and in organic solutions. The extent of photodegradation was assessed by UV-Vis spectroscopy and the main reaction products were identified by tandem electrospray ionization mass spectrometry (ESI-MS/MS). The analysis of degradation products upon UV irradiation revealed the predominant formation of dimeric compounds from MBT and oligomeric structures from BTA, which were further converted into aniline.
View Article and Find Full Text PDFNovel self-healing protective coatings with nanocontainers of corrosion inhibitors open new opportunities for long-term anticorrosion protection of different metallic materials. In this paper a new type of functional nanoreservoir based on silica nanocapsules (SiNC) synthesized and loaded with corrosion inhibitor 2-mercaptobenzothiazole (MBT) in a one-stage process is reported for the first time. Unlike conventional mesoporous silica nanoparticles, SiNC possess an empty core and shell with gradual mesoporosity, arising from the particular conditions of the synthetic route adopted, which confers significant loading capacity and allows prolonged and stimuli-triggered release of the inhibiting species.
View Article and Find Full Text PDFThe mechanism of corrosion protection of the widely used 2024-T3 aluminum alloy by cerium and lanthanum inhibitors in chloride media is described in detail in the present work. The corrosion process was investigated by means of scanning Kelvin probe force microscopy (SKPFM), in situ atomic force microscopy, and scanning electron microscopy coupled with energy dispersive spectroscopy. Employment of the high-resolution and in situ techniques results in a deep understanding of the details of the physical chemistry and mechanisms of the corrosion processes.
View Article and Find Full Text PDF