Publications by authors named "Mario G Mirisola"

The Nutriepigenome.

Genes (Basel)

October 2023

Unlike genetic changes, epigenetics modulates gene expression without stable modification of the genome. Even though all cells, including sperm and egg, have an epigenome pattern, most of these modifications occur during lifetime and interestingly, some of them, are reversible. Lifestyle and especially nutrients as well as diet regimens are presently gaining importance due to their ability to affect the epigenome.

View Article and Find Full Text PDF

Background: The circulating tumor DNA (ctDNA) diagnostic accuracy for detecting phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha () mutations in breast cancer (BC) is under discussion. We aimed to compare plasma and tissue alterations, encompassing factors that could affect the results.

Methods: Two reviewers selected studies from different databases until December 2020.

View Article and Find Full Text PDF

plays a pivotal role as a model system in understanding the biochemistry and molecular biology of mammals including humans. A considerable portion of our knowledge on the genes and pathways involved in cellular growth, resistance to toxic agents, and death has in fact been generated using this model organism. The yeast chronological lifespan (CLS) is a paradigm to study age-dependent damage and longevity.

View Article and Find Full Text PDF

The association between IGF-1 levels and mortality in humans is complex with low levels being associated with both low and high mortality. The present meta-analysis investigates this complex relationship between IGF-1 and all-cause mortality in prospective cohort studies. A systematic literature search was conducted in PubMed/MEDLINE, Scopus, and Cochrane Library up to September 2019.

View Article and Find Full Text PDF

The restriction of proteins, amino acids or sugars can have profound effects on the levels of hormones and factors including growth hormone, IGF-1 and insulin. In turn, these can regulate intracellular signaling pathways as well as cellular damage and aging, but also multisystem regeneration. Both intermittent (IF) and periodic fasting (PF) have been shown to have both acute and long-term effects on these hormones.

View Article and Find Full Text PDF

Objective: This randomized controlled trial examined the efficacy of adding a fasting-mimicking diet to a structured psychotherapy protocol for treating depression.

Design: Of 20 patients with depression, 10 were randomly assigned to psychotherapy and dieting (i.e.

View Article and Find Full Text PDF

Epigenetic profile is the link between the regulation of nuclear gene expression and the environment. The most important factors capable of significantly affecting the cellular environment are the amount and quality of nutrients available. Mitochondria are both involved in the production of some of the molecules capable of directly affecting the epigenome and have a critical role in the conversion of nutrients into usable energy.

View Article and Find Full Text PDF

Research on longevity and healthy aging promises to increase our lifespan and decrease the burden of degenerative diseases with important social and economic effects. Many aging theories have been proposed, and important aging pathways have been discovered. Model organisms have had a crucial role in this process because of their short lifespan, cheap maintenance, and manipulation possibilities.

View Article and Find Full Text PDF

Prolonged fasting (PF) promotes stress resistance, but its effects on longevity are poorly understood. We show that alternating PF and nutrient-rich medium extended yeast lifespan independently of established pro-longevity genes. In mice, 4 days of a diet that mimics fasting (FMD), developed to minimize the burden of PF, decreased the size of multiple organs/systems, an effect followed upon re-feeding by an elevated number of progenitor and stem cells and regeneration.

View Article and Find Full Text PDF

The workshop entitled 'Interventions to Slow Aging in Humans: Are We Ready?' was held in Erice, Italy, on October 8-13, 2013, to bring together leading experts in the biology and genetics of aging and obtain a consensus related to the discovery and development of safe interventions to slow aging and increase healthy lifespan in humans. There was consensus that there is sufficient evidence that aging interventions will delay and prevent disease onset for many chronic conditions of adult and old age. Essential pathways have been identified, and behavioral, dietary, and pharmacologic approaches have emerged.

View Article and Find Full Text PDF

Many aging theories and their related molecular mechanisms have been proposed. Simple model organisms such as yeasts, worms, fruit flies and others have massively contributed to their clarification, and many genes and pathways have been associated with longevity regulation. Among them, insulin/IGF-1 plays a key and evolutionary conserved role.

View Article and Find Full Text PDF

Calorie restriction (CR), which usually refers to a 20-40% reduction in calorie intake, can effectively prolong lifespan preventing most age-associated diseases in several species. However, recent data from both human and nonhumans point to the ratio of macronutrients rather than the caloric intake as a major regulator of both lifespan and health-span. In addition, specific components of the diet have recently been identified as regulators of some age-associated intracellular signaling pathways in simple model systems.

View Article and Find Full Text PDF

Mice and humans with growth hormone receptor/IGF-1 deficiencies display major reductions in age-related diseases. Because protein restriction reduces GHR-IGF-1 activity, we examined links between protein intake and mortality. Respondents aged 50-65 reporting high protein intake had a 75% increase in overall mortality and a 4-fold increase in cancer death risk during the following 18 years.

View Article and Find Full Text PDF

Dietary restriction extends longevity in organisms ranging from bacteria to mice and protects primates from a variety of diseases, but the contribution of each dietary component to aging is poorly understood. Here we demonstrate that glucose and specific amino acids promote stress sensitization and aging through the differential activation of the Ras/cAMP/PKA, PKH1/2 and Tor/S6K pathways. Whereas glucose sensitized cells through a Ras-dependent mechanism, threonine and valine promoted cellular sensitization and aging primarily by activating the Tor/S6K pathway and serine promoted sensitization via PDK1 orthologs Pkh1/2.

View Article and Find Full Text PDF

For millennia, yeast has been exploited to obtain fermentation products, such as foods and beverages. For c. 50 years, yeast has been an established model organism for basic and applied research, and more specifically, for c.

View Article and Find Full Text PDF

Hormesis is an adaptive stress response implicated in longevity regulation. Schroeder et al. (2013) have now connected stress, epigenetic changes, and aging in yeast by showing that mitochondria-derived reactive oxygen species modulate the chromatin binding capacity of the histone demethylase Rph1p at subtelomeres, resulting in lifespan extension.

View Article and Find Full Text PDF

Saccharomyces cerevisiae is one of the most studied model organisms for the identification of genes and mechanisms that affect aging. The chronological lifespan (CLS) assay, which monitors the survival of a non-dividing population, is one of the two methods to study aging in yeast. To eliminate potential artifacts and identify genes and signaling pathways that may also affect aging in higher eukaryotes, it is important to determine CLS by multiple methods.

View Article and Find Full Text PDF

We have constructed new yeast vectors for targeted integration and conditional expression of any sequence at the Saccharomyces cerevisiae TYR1 locus which becomes disrupted. We show that vector integration is not neutral, causing prototrophy for tyrosine and auxotrophy for the vector's selectable marker (uracil or leucine, depending on the vector used). This feature allows a double screening of transformed yeast cells, improving the identification of colonies with the desired chromosomal structure.

View Article and Find Full Text PDF

In the yeast Saccharomyces cerevisiae the genes involved in galactose metabolism (GAL1,7,10) are transcriptionally activated more than a 1000-fold in the presence of galactose as the sole carbon source in the culture media. In the present work, we monitored the activity of the GAL10 gene promoter in different Ras-cAMP genetic backgrounds. We demonstrate that overexpression of C-terminus of the nucleotide exchange factor Cdc25p stimulates GAL10 transcription in yeast strains carrying the contemporary deletion of both RAS genes.

View Article and Find Full Text PDF

In forensic science and in legal medicine Y chromosomal typing is indispensable for sex determination, for paternity testing in the absence of the father and for distinguishing males in multiple rape cases. Another potential application is the estimation of paternal geographic origin or family name from a crime stain to narrow down the range of suspects and thus reduce costs of mass screenings. However, Y typing alone cannot provide a sufficiently resolved DNA fingerprint as required for court convictions.

View Article and Find Full Text PDF