Introduction: The role of the kappa-free light chain (kFLC) in the diagnosis of multiple sclerosis (MS) and, to a lesser extent, its role as a medium-term prognostic marker have been extensively studied. This study aimed to explore its potential as a long-term prognostic marker for MS.
Methods: We performed an exploratory retrospective observational study by selecting patients systemically followed up in our MS unit with available cerebrospinal fluid and serum samples at the time of initial evaluation.
Introduction: SARS-CoV-2 vaccines' effectiveness is not yet clearly known in immunocompromised patients. This study aims to assess the humoral and cellular specific immune response to SARS-CoV-2 vaccines and the predictors of poor response in patients with common variable immunodeficiency (CVID) phenotype and in patients treated with B-cell depletion therapies (BCDT), as well as the safety of these vaccines.
Methods: From March to September 2021, we performed a prospective study of all adult patients who would receive the SARS-CoV-2 vaccination and were previously diagnosed with (i) a CVID syndrome (CVID phenotype group; n=28) or (ii) multiple sclerosis (MS) treated with B-cell depleting therapies three to six months before vaccination (BCD group; n=24).
Patients with coronavirus disease 2019 (COVID-19) frequently develop acute encephalopathy and encephalitis, but whether these complications are the result from viral-induced cytokine storm syndrome or anti-neural autoimmunity is still unclear. In this study, we aimed to evaluate the diagnostic and prognostic role of CSF and serum biomarkers of inflammation (a wide array of cytokines, antibodies against neural antigens, and IgG oligoclonal bands), and neuroaxonal damage (14-3-3 protein and neurofilament light [NfL]) in patients with acute COVID-19 and associated neurologic manifestations (neuro-COVID). We prospectively included 60 hospitalized neuro-COVID patients, 25 (42%) of them with encephalopathy and 14 (23%) with encephalitis, and followed them for 18 months.
View Article and Find Full Text PDFBackground: It is important to predict which patients infected by SARS-CoV-2 are at higher risk of life-threatening COVID-19. Several studies suggest that neutralizing auto-antibodies (auto-Abs) against type I interferons (IFNs) are predictive of critical COVID-19 pneumonia.
Objectives: We aimed to test for auto-Abs to type I IFN and describe the main characteristics of COVID-19 patients admitted to intensive care depending on whether or not these auto-Abs are present.