Bacteria frequently employ carbohydrate-binding proteins, so-called lectins, to colonize and persist in a host. Thus, bacterial lectins are attractive targets for the development of new antiinfectives. To find new potential targets for antiinfectives against pathogenic bacteria, we searched for homologs of Pseudomonas aeruginosa lectins and identified homologs of LecA in Enterobacter species.
View Article and Find Full Text PDFDual inhibitors of two key virulence factors of , the lectin LecA and the protease LasB, open up an opportunity in the current antimicrobial-resistance crisis. A molecular hybridization approach enabled the discovery of potent, selective, and non-toxic thiol-based inhibitors, which simultaneously inhibit these two major extracellular virulence factors and therefore synergistically interfere with virulence. We further demonstrated that the dimerization of these monovalent dual inhibitors under physiological conditions affords divalent inhibitors of LecA with a 200-fold increase in binding affinity.
View Article and Find Full Text PDFThe cell central metabolism has been shaped throughout evolutionary times when facing challenges from the availability of resources. In the budding yeast, , a set of duplicated genes originating from an ancestral whole-genome and several coetaneous small-scale duplication events drive energy transfer through glucose metabolism as the main carbon source either by fermentation or respiration. These duplicates (~a third of the genome) have been dated back to approximately 100 MY, allowing for enough evolutionary time to diverge in both sequence and function.
View Article and Find Full Text PDFEthanol is the main by-product of yeast sugar fermentation that affects microbial growth parameters, being considered a dual molecule, a nutrient and a stressor. Previous works demonstrated that the budding yeast arose after an ancient hybridization process resulted in a tier of duplicated genes within its genome, many of them with implications in this ethanol "produce-accumulate-consume" strategy. The evolutionary link between ethanol production, consumption, and tolerance versus ploidy and stability of the hybrids is an ongoing debatable issue.
View Article and Find Full Text PDFProtein stability is a major constraint on protein evolution. Molecular chaperones, also known as heat-shock proteins, can relax this constraint and promote protein evolution by diminishing the deleterious effect of mutations on protein stability and folding. This effect, however, has only been stablished for a few chaperones.
View Article and Find Full Text PDFBacterial cells adapting to a constant environment tend to accumulate mutations in portions of their genome that are not maintained by selection. This process has been observed in bacteria evolving under strong genetic drift, and especially in bacterial endosymbionts of insects. Here, we study this process in hypermutable Escherichia coli populations evolved through 250 single-cell bottlenecks on solid rich medium in a mutation accumulation experiment that emulates the evolution of bacterial endosymbionts.
View Article and Find Full Text PDFBackground: MiRNAs have emerged as key regulators of stress response in plants, suggesting their potential as candidates for knock-in/out to improve stress tolerance in agricultural crops. Although diverse assays have been performed, systematic and detailed studies of miRNA expression and function during exposure to multiple environments in crops are limited.
Results: Here, we present such pioneering analysis in melon plants in response to seven biotic and abiotic stress conditions.
Comparison of the proteins of thermophilic, mesophilic, and psychrophilic prokaryotes has revealed several features characteristic to proteins adapted to high temperatures, which increase their thermostability. These characteristics include a profusion of disulfide bonds, salt bridges, hydrogen bonds, and hydrophobic interactions, and a depletion in intrinsically disordered regions. It is unclear, however, whether such differences can also be observed in eukaryotic proteins or when comparing proteins that are adapted to temperatures that are more subtly different.
View Article and Find Full Text PDFNaCl-saturated brines such as saltern crystalliser ponds, inland salt lakes, deep-sea brines and liquids-of-deliquescence on halite are commonly regarded as a paradigm for the limit of life on Earth. There are, however, other habitats that are thermodynamically more extreme. Typically, NaCl-saturated environments contain all domains of life and perform complete biogeochemical cycling.
View Article and Find Full Text PDFThe population genetic mechanisms governing the preservation of gene duplicates, especially in the critical very initial phase, have remained largely unknown. Here, we demonstrate that gene duplication confers per se a weak selective advantage in scenarios of fitness trade-offs. Through a precise quantitative description of a model system, we show that a second gene copy serves to reduce gene expression inaccuracies derived from pervasive molecular noise and suboptimal gene regulation.
View Article and Find Full Text PDFPhylogenetic analysis by maximum likelihood (PAML) has become the standard approach to study positive selection at the molecular level, but other methods may provide complementary ways to identify amino acid replacements associated with particular conditions. Here, we compare results of the decision tree (DT) model method with ones of PAML using the key photosynthetic enzyme RuBisCO as a model system to study molecular adaptation to particular ecological conditions in oaks (Quercus). We sequenced the chloroplast rbcL gene encoding RuBisCO large subunit in 158 Quercus species, covering about a third of the global genus diversity.
View Article and Find Full Text PDFAn 'interactome' screen of all cell-surface and secreted proteins containing immunoglobulin superfamily (IgSF) domains discovered a network formed by paralogs of Beaten Path (Beat) and Sidestep (Side), a ligand-receptor pair that is central to motor axon guidance. Here we describe a new method for interactome screening, the Bio-Plex Interactome Assay (BPIA), which allows identification of many interactions in a single sample. Using the BPIA, we 'deorphanized' four more members of the Beat-Side network.
View Article and Find Full Text PDFGene duplication is an important source of novelties and genome complexity. What genes are preserved as duplicated through long evolutionary times can shape the evolution of innovations. Identifying factors that influence gene duplicability is therefore an important aim in evolutionary biology.
View Article and Find Full Text PDFAn open question in evolutionary biology is how does the selection-drift balance determine the fates of biological interactions. We searched for signatures of selection and drift in genomes of five endosymbiotic bacterial groups known to evolve under strong genetic drift. Although most genes in endosymbiotic bacteria showed evidence of relaxed purifying selection, many genes in these bacteria exhibited stronger selective constraints than their orthologs in free-living bacterial relatives.
View Article and Find Full Text PDFGlycerol synthesis is key to central metabolism and stress biology in Saccharomyces cerevisiae, yet the cellular adjustments needed to respond and adapt to glycerol stress are little understood. Here, we determined impacts of acute and chronic exposures to glycerol stress in S. cerevisiae.
View Article and Find Full Text PDFGene and genome duplication are the major sources of biological innovations in plants and animals. Functional and transcriptional divergence between the copies after gene duplication has been considered the main driver of innovations . However, here we show that increased phenotypic plasticity after duplication plays a more major role than thought before in the origin of adaptations.
View Article and Find Full Text PDFThe Neutral Theory of Molecular Evolution is considered the most powerful theory to understand the evolutionary behavior of proteins. One of the main predictions of this theory is that essential proteins should evolve slower than dispensable ones owing to increased selective constraints. Comparison of genomes of different species, however, has revealed only small differences between the rates of evolution of essential and nonessential proteins.
View Article and Find Full Text PDFMolecular chaperones, also known as heat-shock proteins, refold misfolded proteins and help other proteins reach their native conformation. Thanks to these abilities, some chaperones, such as the Hsp90 protein or the chaperonin GroEL, can buffer the deleterious phenotypic effects of mutations that alter protein structure and function. Hsp70 chaperones use a chaperoning mechanism different from that of Hsp90 and GroEL, and it is not known whether they can also buffer mutations.
View Article and Find Full Text PDFPISTILLATA (PI) is a member of the B-function MADS-box gene family, which controls the identity of both petals and stamens in Arabidopsis thaliana. In Medicago truncatula (Mt), there are two PI-like paralogs, known as MtPI and MtNGL9. These genes differ in their expression patterns, but it is not known whether their functions have also diverged.
View Article and Find Full Text PDFThe immune system of H. sapiens has innate signaling pathways that arose in ancestral species. This is exemplified by the discovery of the Toll-like receptor (TLR) pathway using free-living model organisms such as Drosophila melanogaster.
View Article and Find Full Text PDFMolecular chaperones fold many proteins and their mutated versions in a cell and can sometimes buffer the phenotypic effect of mutations that affect protein folding. Unanswered questions about this buffering include the nature of its mechanism, its influence on the genetic variation of a population, the fitness trade-offs constraining this mechanism, and its role in expediting evolution. Answering these questions is fundamental to understand the contribution of buffering to increase genetic variation and ecological diversification.
View Article and Find Full Text PDFBiological systems are resistant to genetic changes; a property known as mutational robustness, the origin of which remains an open question. In recent years, researchers have explored emergent properties of biological systems and mechanisms of genetic redundancy to reveal how mutational robustness emerges and persists. Several mechanisms have been proposed to explain the origin of mutational robustness, including molecular chaperones and gene duplication.
View Article and Find Full Text PDF